AQA

Surname

\qquad
Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature

A-level

PHYSICS

Paper 2

7408/2

Friday 24 May 2019 Morning

Time allowed: $\mathbf{2}$ hours

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 85.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- | FIGURE 1 shows a perfectly insulated cylinder containing 0.050 kg of liquid nitrogen at a temperature of 70 K .

A heater transfers energy at a constant rate of 12 W to the nitrogen.
A piston maintains the pressure at $1.0 \times 10^{5} \mathbf{~ P a}$ during the heating process.

FIGURE 1
NOT TO SCALE

| 0 | 1 | 1 |
| :--- | :--- | :--- | completely turned into a gas after 890 s.

Calculate the specific heat capacity of liquid nitrogen.
Give an appropriate unit for your answer.
specific latent heat of vaporisation of nitrogen
$=2.0 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$
boiling point of nitrogen $=77 \mathrm{~K}$
[5 marks]
specific heat capacity $=$
Unit $=$
[Turn over]

0	1	2
The work done by the nitrogen in the cylinder		

Deduce which is greater, X or Y .
density of liquid nitrogen at its boiling temperature $=810 \mathrm{~kg} \mathrm{~m}^{-3}$
density of nitrogen gas at its boiling temperature $=3.8 \mathrm{~kg} \mathrm{~m}^{-3}$
[4 marks]
[Turn over]

| 0 | 2. | 1 State what is meant by the internal energy of |
| :--- | :--- | :--- | a gas. [2 marks]

| 0 | 2 | 2 |
| :--- | :--- | :--- | Absolute zero of temperature can be interpreted in terms of the ideal gas laws or the kinetic energy of particles in an ideal gas.

Describe these two interpretations of absolute zero of temperature. [2 marks]
[Turn over]

| 0 | 2 | 3 |
| :--- | :--- | :--- | A mixture of argon atoms and helium atoms is in a cylinder enclosed with a piston. The mixture is at a temperature of $\mathbf{3 1 0 ~ K}$.

Calculate the root mean square speed (c_{rms}) of the argon atoms in the mixture. molar mass of argon $=4.0 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}$ [3 marks]
$c_{\mathrm{rms}}=\square \mathrm{m} \mathrm{s}^{-1}$

\section*{| 0 | 2 | 4 |
| :--- | :--- | :--- |
| Compare the mean kinetic energy of the argon | | | atoms and the helium atoms in the mixture. [1 mark]}

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2.</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">5</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2. | 5 |
| :--- | :--- | :--- |</table-markdown></div> Explain, in terms of the kinetic theory model, why a pressure is exerted by the gas on the piston. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 |
| :--- | :--- | :--- |</table-markdown></div> The mixture of gases in the cylinder stays the same.

Explain, using the kinetic theory model, TWO changes that can be made independently to reduce the pressure exerted by the gas.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

| 0 | 3 | 1 Define gravitational potential at a point. |
| :--- | :--- | :--- | [1 mark]

0	3	2
2	FIGURE 2	shows the positions of

FIGURE 2
distance from
centre of
Moon/ 10^{6} m
gravitational

NOT TO
SCALE

Explain how the equipotential surfaces in FIGURE 2 show that the gravitational field is NOT uniform. [1 mark]

[Turn over]

BLANK PAGE

\section*{| 0 | 3. | 3 Calculate, using FIGURE 2 on page 16, the |
| :--- | :--- | :--- | escape velocity at the surface of the Moon.}

radius of Moon $=1.74 \times 10^{6} \mathrm{~m}$
[4 marks]
escape velocity $=$ $\mathrm{m} \mathrm{s}^{-1}$

0	4
FIGURE 3 shows an arrangement used to	

The spheres are suspended by non-conducting thread.

FIGURE 3

Each sphere has a mass of $3.2 \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{~ k g}$ and a radius of 20 mm .
The distance d is $\mathbf{4 0} \mathbf{~ m m}$.

The capacitance of a sphere of radius r is $4 \pi \varepsilon_{0} r$.
Each sphere is charged by connecting it briefly to the positive terminal of a high-voltage supply, the other terminal of which is at 0 V .
After this has been done the charge on each sphere is 52 nC .

| 0 | 4 | 1 |
| :--- | :--- | :--- | Calculate the potential of one of the spheres. [3 marks]

potential $=$ \qquad V

0	4.	2
The charged spheres in FIGURE 3		

Draw labelled arrows on FIGURE 3 to show the forces on sphere B. [2 marks]

| 0 | 4 | 3 |
| :--- | :--- | :--- | the measurement of d in FIGURE 3, on page 20. [2 marks]

\qquad
\qquad
\qquad
\qquad

0	4	4
4	Show that the magnitude of the electrostatic	

[Turn over]

BLANK PAGE

| 0 | 4 | 5 | A student measures the angle θ when the |
| :--- | :--- | :--- | :--- | apparatus in FIGURE 3, on page 20, is at equilibrium. The student records θ as 7°.

Discuss whether this measurement is consistent with the other data in this investigation. [2 marks]

04 . 6 The student says that the gravitational force between the two spheres has no SIGNIFICANT effect on the angle at which the spheres are in equilibrium.

Deduce with a calculation whether this
statement is valid. [2 marks]
[Turn over]

| 0 | 5 | A square coil of wire is rotating at a constant |
| :--- | :--- | :--- | angular speed about a horizontal axis. FIGURE 4 shows the coil at one instant when the normal to the plane of the coil is at 30° to a magnetic field.

FIGURE 4

The area of the coil is $5.0 \times 10^{\mathbf{- 4}} \mathbf{~ m}^{\mathbf{2}}$ and the flux density of the uniform magnetic field is $2.5 \times 10^{-2} \mathrm{~T}$.

| 0 | 5 | 1 The maximum flux linkage of the coil during its |
| :--- | :--- | :--- | rotation is $1.5 \times 10^{-3} \mathbf{~ W b}$ turns.

Calculate the number of turns in the coil. [2 marks]
number of turns $=$
[Turn over]

BLANK PAGE

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">5.</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Calculate the flux linkage of the coil at the</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 5. | 2 |
| :--- | :--- | :--- |
| Calculate the flux linkage of the coil at the | | |</table-markdown></div> instant shown in FIGURE 4 on page 28. [1 mark]

flux linkage $=$ Wb turns

[Turn over]

0 0. 5 . 3 The coil forms part of an electrical generator. FIGURE 5 shows the emf generated by the coil. FIGURE 5 emf

time / s

Calculate the peak value of the emf generated. [2 marks]
emf =
\qquad V

0 5. 4 Sketch on FIGURE 6 the variation with time of flux linkage for the same time interval as FIGURE 5. [1 mark]

FIGURE 5

flux linkage

[Turn over]

| 0 | 6 | A thermal nuclear reactor uses a moderator to |
| :--- | :--- | :--- | lower the kinetic energy of fast-moving neutrons.

| 0 | 6. | Explain why the kinetic energy of neutrons |
| :--- | :--- | :--- | must be reduced in a thermal nuclear reactor. [1 mark]

| 0 | 6. | 2 |
| :--- | :--- | :--- | As a result of a collision with an atom of a particular moderator, a neutron loses 63% of its kinetic energy.

A neutron has an initial kinetic energy of 2.0 MeV.

Calculate the kinetic energy of the neutron after five collisions. [2 marks]
kinetic energy = \qquad eV
[Turn over]

BLANK PAGE

| 0 | 6 | .3 |
| :--- | :--- | :--- | nuclear reactor is reduced from about 2 MeV to about 1 eV .

Explain why the number of collisions needed to do this depends on the nucleon number of the moderator atoms. [2 marks]
[Turn over]

| 0 | 6.4 | One fission process which can occur in a |
| :--- | :--- | :--- | thermal nuclear reactor is represented by the equation

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n}={ }_{54}^{142} \mathrm{Xe}+{ }_{38}^{90} \mathrm{Sr}+\mathbf{4}_{0}^{1} \mathrm{n}
$$

Calculate in MeV the energy released in this fission process.
mass of ${ }_{92}^{\mathbf{2 3 5}} \mathrm{U}=\mathbf{2 3 5 . 0 4 4} \mathbf{u}$
mass of ${ }_{54}^{142} \mathrm{Xe}=141.930 \mathrm{u}$
mass of ${ }_{38}^{90} \mathrm{Sr} \quad=\mathbf{8 9 . 9 0 8} \mathbf{u}$
mass of ${ }_{0}^{1} n \quad=1.0087 \mathbf{u}$
[3 marks]
\qquad

| 0 | 6.5 | 5 |
| :--- | :--- | :--- | Many magazine and newspaper articles focus on the risks of using nuclear power.

State THREE BENEFITS of using nuclear power. [3 marks]

1
\qquad
\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad

41

3
[Turn over]

SECTION B

Each of Questions 07 to 31 is followed by four responses, A, B, C and D.

For each question select the best response.

Only ONE answer per question is allowed.
For each question completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.

Do NOT use additional sheets for this working.

0	7	Brownian motion

[1 mark]

A makes it possible to see the motion of air molecules.

B is caused by the collisions of smoke particles.

C is caused by collisions between air molecules and smoke particles.

D occurs because air is a mixture of gases and the molecules have different masses.
[Turn over]

| 0 | 8 |
| :--- | :--- | :--- | [1 mark]

	A	gravitational potential	gravitational field strength
\square	B	mass	gravitational potential
\square	C	gravitational field strength	weight
\square	D	weight	gravitational potential

| 0 | 9 |
| :--- | :--- | :--- | What is the angular speed of a satellite in a geostationary orbit around the Earth?

[1 mark]

A $1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$

B $7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$C $4.2 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
0
D $2.6 \times \mathbf{1 0}^{-1} \mathbf{r a d ~ s}^{-1}$

| 1 | 0 |
| :--- | :--- | A planet of mass M and radius R rotates so quickly that material at its equator only just remains on its surface.

What is the period of rotation of the planet? [1 mark]

$$
0
$$

A $2 \pi \sqrt{\frac{R}{G M}}$

B $2 \pi \sqrt{\frac{G M}{R}}$

C $2 \pi \sqrt{\frac{R^{3}}{G M}}$
0
D $2 \pi \sqrt{\frac{G M}{R^{3}}}$

[Turn over]

1 1 1 Satellites N and F have the same mass and are in circular orbits about the same planet. The orbital radius of F is greater than that of \mathbf{N}.

Which is greater for \mathbf{F} than for \mathbf{N} ? [1 mark]

0
O B angular speed

C kinetic energy

D orbital period

A gravitational force on the satellite

| 1 | 2 | An object moves freely at 90° |
| :--- | :--- | :--- | to the direction of a gravitational field.

The acceleration of the object is
[1 mark]

A zero.

B opposite to the direction of the gravitational field.

C in the direction of the gravitational field.

D at 90° to the direction of the gravitational field.
[Turn over]

| 1 | 3 |
| :--- | :--- | When an electron is moving at a speed v perpendicular to a uniform magnetic field of flux density B, it follows a path of radius R.

A second electron moves at a speed $\frac{v}{2}$ perpendicular to a uniform magnetic field of flux density $4 B$.

What is the radius of the path of the second electron? [1 mark]
O
A $\quad \frac{R}{8}$

B $\frac{R}{4}$
0

C $2 R$

D 8 R
O
 The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.

What is V ? [1 mark]
$\bigcirc \quad$ A $\frac{m Q g}{d}$
\bigcirc
B $\frac{m d g}{Q}$

C $\frac{m Q}{d}$
O
D $\frac{m d}{Q}$
[Turn over]

| 1 | 5 |
| :--- | :--- | .5 mJ of work is done when a charge of $30 \mu \mathrm{C}$ is moved between two points, M and N , in an electric field.

What is the potential difference between M and N ? [1 mark]

| 1 | 6 | An electric field acts into the plane of the |
| :--- | :--- | :--- | paper. An electron enters the field at 90° to the field lines.

The force on the electron is
[1 mark]
$\bigcirc \quad$ A zero.

B along the direction of the field.C at 90° to the field.

D opposite to the direction of the field.

[Turn over]

| 1 | 7 | The ionisation potential for the atoms of a |
| :--- | :--- | :--- | gas is V. Electrons of mass m and charge e travelling at a speed v can just cause ionisation of atoms in the gas.

What is \boldsymbol{v} ? [1 mark]

$$
\bigcirc \quad A \frac{e V}{2 m}
$$

O
B $\frac{2 e V}{m}$

C $\sqrt{\frac{e V}{2 m}}$
$\bigcirc \mathrm{D} \sqrt{\frac{\mathbf{2 e V}}{\boldsymbol{m}}}$

| 1 | 8 |
| :--- | :--- | :--- | a cloud chamber, straight tracks about 4 cm long are observed. The same source is placed 10 cm from a Geiger tube and a count rate is detected. When a sheet of aluminium 5 mm thick is placed between the source and the Geiger tube the count rate falls to the background count rate.

Which types of radiation are emitted by the source? [1 mark]

A $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and γ

B $\boldsymbol{\beta}$ and γ

C α and γ

D $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$
[Turn over]

| 1 | 9 | A parallel-plate capacitor is made by |
| :--- | :--- | :--- | inserting a sheet of dielectric material between two plates. Both plates are in contact with the sheet.

Which relative permittivity and sheet thickness give the greatest capacitance? [1 mark]

	Relative permittivity	Thickness / mm	
	A	2	0.40
\square	B	3	0.90
O	C	4	1.0
O	D	6	1.6

| 2 | 0 |
| :--- | :--- | A $1.0 \mu \mathrm{~F}$ capacitor is charged for 20 s using a constant current of $10 \mu \mathrm{~A}$.

What is the energy transferred to the capacitor? [1 mark]

A $5.0 \times 10^{-3} \mathrm{~J}$B $1.0 \times \mathbf{1 0}^{-\mathbf{2}} \mathrm{J}$

C $2.0 \times 10^{-2} \mathrm{~J}$
0
D $4.0 \times \mathbf{1 0}^{-2} \mathrm{~J}$
[Turn over]

2	1
A	

What is the maximum current during the discharge of the capacitor? [1 mark]

| 2 | 2 | The initial potential difference across a |
| :--- | :--- | :--- | capacitor is V_{0}. The capacitor discharges through a circuit of time constant T. The base of natural logarithms is e.

What is the potential difference across the capacitor after time T ? [1 mark]A $\frac{V_{0}}{2}$
0
B $\frac{V_{0}}{\mathrm{e}}$

C $\quad V_{0} \mathrm{e}$D $\quad V_{0} \ln 2$
[Turn over]

| 2 | 3 | The plane of coil PQRS is parallel to a |
| :--- | :--- | :--- | uniform magnetic field.

When a current I is in the coil
[1 mark]

A there are no magnetic forces acting on SP and QR.

B there are no magnetic forces acting on PQ and RS.

C an attractive magnetic force acts between SP and QR.

O
D an attractive magnetic force acts between PQ and RS.

| 2 | 4 | A horizontal wire of length 0.50 m and weight |
| :--- | :--- | :--- | 1.0 N is placed in a uniform horizontal magnetic field of flux density 1.5 T directed at 90° to the wire.

What is the current that just supports the wire? [1 mark]

A 0.33 A
○
B 0.75 A

C $\quad 1.3 \mathrm{~A}$
0
D 3.0 A
[Turn over]

| 2 | 5 | Which is NOT an assumption about gas |
| :--- | :--- | :--- | particles in the kinetic theory model for a gas? [1 mark]

A They collide elastically with the container walls.

B They have negligible size compared to the distance between the container walls.

C They travel between the container walls in negligibly short times.

D They collide with the container walls in negligibly short times.

| 2 | 6 |
| :--- | :--- | A coil P is connected to a cell and a switch. A second closed coil Q is parallel to P and is arranged on the same axis.

When the switch is closed, coil Q experiences a force.

Which row describes the force on \mathbf{Q} ? [1 mark]

| 2 | 7 | Three identical magnets P, Q and R are |
| :--- | :--- | :--- | released simultaneously from rest and fall to the ground from the same height.

P falls directly to the ground.
Q falls through the centre of a thick horizontal conducting ring.
\mathbf{R} falls through a similar ring that has a gap cut into it.

In which order do the magnets reach the ground? [1 mark]

A P and R arrive together, followed by \mathbf{Q}.

B $\quad P$ and Q arrive together, followed by R.

C P arrives first, followed by Q which is followed by R.

D All three magnets arrive simultaneously.
[Turn over]

| 2 | 8 | A steady current I dissipates power P in a |
| :--- | :--- | :--- | resistor of resistance \boldsymbol{R}.

An alternating current through a resistor of resistance $2 R$ has a peak value of I.

What is the power dissipated in the second resistor? [1 mark]

A $\underset{\sqrt{2}}{\boldsymbol{P}}$

B $\quad P$

C $\sqrt{2} P$

0
D 2P

BLANK PAGE

[Turn over]

| 2 | 9 | The figure shows an oscilloscope trace of a |
| :--- | :--- | :--- | sinusoidal ac voltage.

The time base setting is $5 \mathrm{~ms} \mathrm{~cm}^{-1}$ and the Y-voltage gain is $10 \mathrm{~V} \mathrm{~cm}^{-1}$.

Which row describes the ac voltage? [1 mark]

[Turn over]

| 3 | 0 | A deuterium nucleus and a tritium nucleus |
| :--- | :--- | :--- | fuse together to form a helium nucleus and a particle \mathbf{X}. The equation for this process is:

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{\mathbf{3}} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{X}
$$

What is X ? [1 mark]

\bigcirc A electron
0
B neutron

C positron
O
D proton

| 3 | 1 | What effect are the control rods intended to |
| :--- | :--- | :--- | have on the average kinetic energy and number of fission neutrons in a thermal nuclear reactor? [1 mark]

	Average kinetic energy of fission neutrons	Number of fission neutrons
\bigcirc	A	unchanged

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
$7-31$	
TOTAL	

Copyright information

For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/CH/Jun19/7408/2/E3

