

Surname	
Other Names	
Centre Number	
Candidate Number	
Candidate Signature	
I declare this is my own work.	

AS

FURTHER MATHEMATICS

Paper 1

7366/1

Monday 11 May 2020 Afternoon

Time allowed: 1 hour 30 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

For this paper you must have:

- the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions.
- You must answer each question in the space provided for that question. Do NOT write on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

1 Express the complex number $1 - i\sqrt{3}$ in modulus-argument form.

Tick (\checkmark) ONE box. [1 mark]

Given that 1 - i is a root of the equation $z^3 - 3z^2 + 4z - 2 = 0$, find the other two roots.

Tick (✓) ONE box. [1 mark]

–1 + i and –1

1 + i and 1

-1 + i and 1

1 + i and -1

3 Given (x-1)(x-2)(x-a) < 0 and a > 2

Find the set of possible values of x.

Tick (\checkmark) ONE box. [1 mark]

$$\{x: x < 1\} \cup \{x: 2 < x < a\}$$

$$\{x: 1 < x < 2\} \cup \{x: x > a\}$$

$$\{x: x < -a\} \cup \{x: -2 < x < -1\}$$

BLANK PAGE

4 The matrices A and B are such that

$$A = \begin{bmatrix} 2 & a & 3 \\ 0 & -2 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -3 \\ -2 & 4a \\ 0 & 5 \end{bmatrix}$$

4	(a)	Find the product AB in terms of a. [2 marks]

4 (b)	Find the determinant of AB in terms of <i>a</i> . [1 mark]

4	(c)	Show that AB is singular when $a = -1$ [2 marks]

5 (a) Show that

$$r^{2}(r+1)^{2} - (r-1)^{2}r^{2} = pr^{3}$$

where p is an integer to be found. [1 mark]	
·	_
·	_
	-
	-
	-
	-
	
	=
	_

5	(b)	Hence use the method of differences to show
		that

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

[3 marks]			

Anna has been asked to describe the transformation given by the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

She writes her answer as follows:

The transformation is a rotation about the x-axis through an angle of θ , where

$$\sin \theta = \frac{1}{2}$$
 and $-\sin \theta = -\frac{1}{2}$ $\theta = 30^{\circ}$

Identify and correct the error in Anna's work. [2 marks]

7	Prove by induction that, for all integers $n \ge 1$, the expression $7^n - 3^n$ is divisible by 4 [4 marks]

 -8-6-8
 3 3 3

 		 		
 :-:-:-:-:-:-:-:-:-:-:-:-:-:-:		 	· !! ! ! -	

BLANK PAGE

8 (a	Prove	that
,		•	

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

[5 marks]			

8	(b)	Prove that the graphs of
		$y = \sinh x$ and $y = \cosh x$
		do NOT intersect. [3 marks]

9		The quadratic equation $2x^2 + px + 3 = 0$ has two roots, α and β , where $\alpha > \beta$.
9	(a) (i)	Write down the value of $\alpha \beta$. [1 mark]
9	(a) (ii)	Express $\alpha + \beta$ in terms of p . [1 mark]

9	(b)	Hence find $(\alpha - \beta)^2$ in terms of p . [2 marks]

9	(c)	HENCE find, in terms of p , a quadratic equation with roots α – 1 and β + 1 [4 marks]

10 ((a)	Show	that	the	equation
10 ((u)	OHOW	tilat		cquation

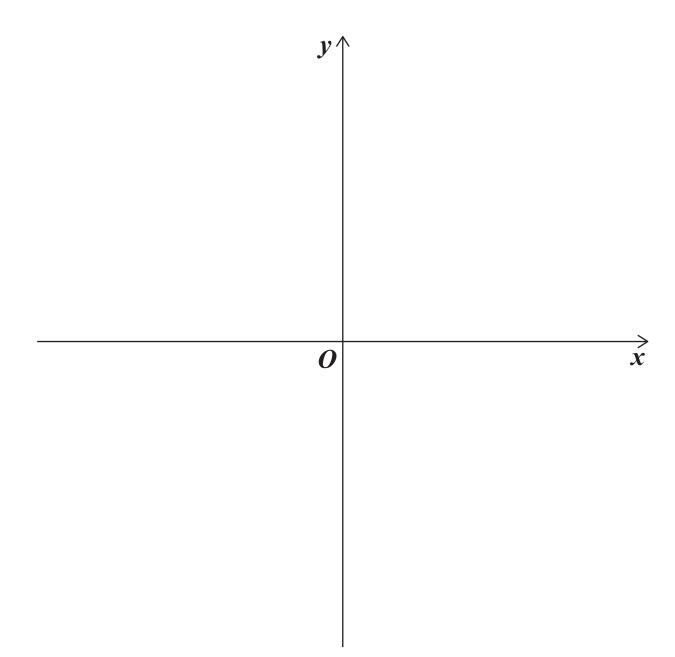
$$y = \frac{3x - 5}{2x + 4}$$

can be written in the form

$$(x+a)(y+b)=c$$

where a, b and c are integers to be found. [3 marks]

(b)	Write down the equations of the asymptotes the graph of
	$y = \frac{3x - 5}{2x + 4}$
	[2 marks]
	


10	(c)	Sketch.	on the	axes	provided,	the	graph	of
	(-)		• • • • • • • • • • • • • • • • • • • •	0.7100	p 1 ,	••••	9. ~P	•

$$y = \frac{3x - 5}{2x + 4}$$

[3 marks] 			
	 	 	====

11	Sketch	the	polar	graph	of
				3	

 $r = \sinh \theta + \cosh \theta$

for $0 \le \theta \le 2\pi$	[3 marks]

12	The mean value of the function f over the interval $1 \le x \le 5$ is m .
	The graph of $y = g(x)$ is a reflection in the x -axis of $y = f(x)$.
	The graph of $y = h(x)$ is a translation of $y = g(x)$ by $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$
	$y - g(x)$ by $\begin{bmatrix} 7 \end{bmatrix}$
	Determine, in terms of m , the mean value of the function h over the interval $4 \le x \le 8$ [2 marks]
	·

Line l_1 has equation

$$\frac{x-2}{3} = \frac{1-2y}{4} = -z$$

and line l_2 has equation

$$\mathbf{r} = \begin{bmatrix} -7 \\ 4 \\ -2 \end{bmatrix} + \mu \begin{bmatrix} 12 \\ a+3 \\ 2b \end{bmatrix}$$

13 (a)	In the case when l_1 and l_2 are parallel, show that a = -11 and find the value of b . [4 marks]
	·

13 (b)	In a DIFFERENT case, the lines l_1 and l_2 intersect at exactly one point, and the value of b is 3				
	Find the value of a. [5 marks]				

BLANK PAGE

14 (a) Given

$$\frac{x+7}{x+1} \le x+1$$

show that

$$\frac{(x+a)(x+b)}{x+c} \ge 0$$

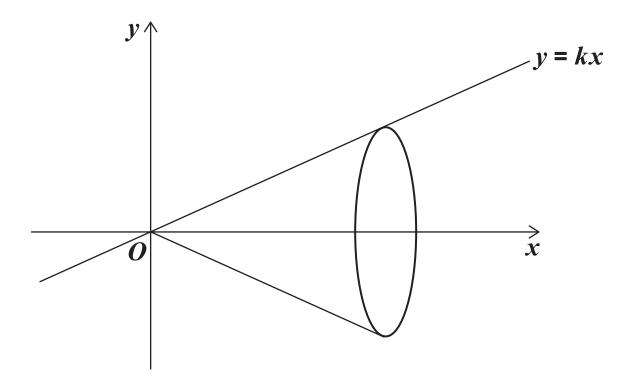
where a , b , and c are integers to be found. [4 marks]		
	===	
	===	
	===	

14 (b)	Briefly explain why this statement is incorrect. $\frac{(x+p)(x+q)}{x+r} \ge 0 \Leftrightarrow (x+p)(x+q)(x+r) \ge 0$
	x + r [1 mark]

14 ((c)	Solve
1	. – ,	

$$\frac{x+7}{x+1} \le x+1$$

[2 marks]			
		 	



15 A segment of the line y = kx is rotated about the x-axis to generate a cone with vertex O.

The distance of O from the centre of the base of the cone is h.

The radius of the base of the cone is r.

15 (a)	Find	k in	terms	of r	and	h.	[1	mark]

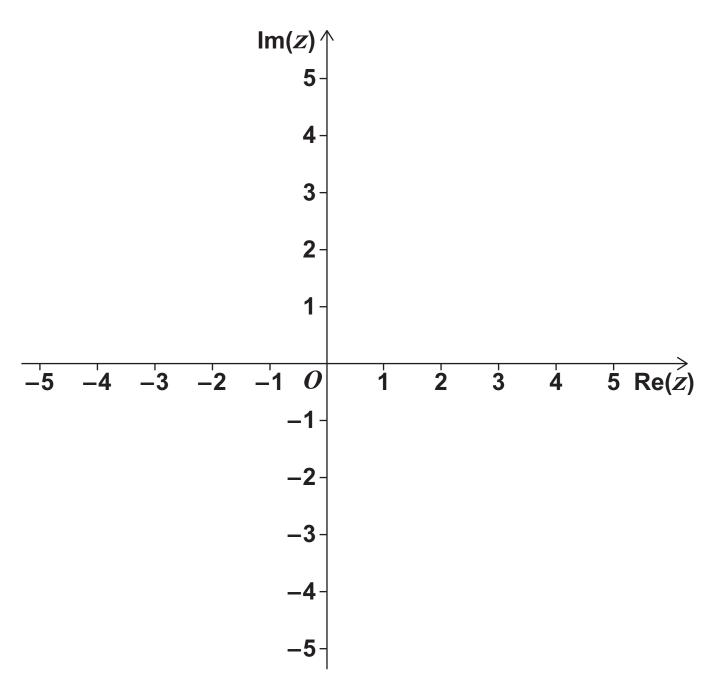
15 (b)	Use calculus to prove that the volume of the
	cone is

 $\frac{1}{3}\pi r^2 h$

[3 marks]	3		
		-1-1-1-1-1-1-1-1	

16	A and B are non-singular square matrices.
16 (a)	Write down the product AA ⁻¹ as a single matrix. [1 mark]
16 (b)	M is a matrix such that M = AB.
	Prove that $M^{-1} = B^{-1}A^{-1}$ [3 marks]

17	The polar equation of the circle C is				
	$r = a(\cos \theta + \sin \theta)$				
	Find, in terms of a , the radius of C .				
	Fully justify your answer. [4 marks]				



The locus of points L_1 satisfies the equation |z| = 2

The locus of points L_2 satisfies the equation $\arg(z+4) = \frac{\pi}{4}$

18 (a) Sketch L_1 on the Argand diagram below. [1 mark]

18 (b)	Sketch L_2 on the Argand diagram on page 6	0 .
	[1 mark]	

18 (c) The complex number a + ib, where a and b are real, lies on L_1

The complex number c + id, where c and d are real, lies on L_2

Calculate the least possible value of the expression

$$(c-a)^2+(d-b)^2$$

[3 marks]

END OF QUESTIONS

BLANK PAGE

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
TOTAL				

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright $\ensuremath{\texttt{@}}$ 2020 AQA and its licensors. All rights reserved.

GB/VW/Jun20/7366/1/E3

