

| Surname                        |  |
|--------------------------------|--|
| Other Names                    |  |
| Centre Number                  |  |
| Candidate Number               |  |
| Candidate Signature            |  |
| I declare this is my own work. |  |

# A-level FURTHER MATHEMATICS

Paper 1

7367/1

Friday 22 May 2020 Morning

Time allowed: 2 hours

#### You must have:

- the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.



### **BLANK PAGE**



#### **INSTRUCTIONS**

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions.
- You must answer each question in the space provided for that question.
- Do NOT write on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

#### **ADVICE**

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

DO NOT TURN OVER UNTIL TOLD TO DO SO



Answer ALL questions in the space provided.

Which of the integrals below is NOT an improper integral?

Circle your answer. [1 mark]

$$\int_0^\infty e^{-x} dx$$

$$\int_0^2 \frac{1}{1-x^2} \, \mathrm{d}x$$

$$\int_0^1 \sqrt{x} \, \mathrm{d}x$$

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x$$



Which one of the matrices below represents a rotation of  $90^{\circ}$  about the *x*-axis?

Circle your answer. [1 mark]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$



The quadratic equation  $ax^2 + bx + c = 0$   $(a, b, c \in \mathbb{R})$  has real roots  $\alpha$  and  $\beta$ .

One of the four statements below is incorrect.

Which statement is INCORRECT?

Tick (✓) ONE box. [1 mark]



 $c = a \Rightarrow \alpha$  is the reciprocal of  $\beta$ 

b < 0 and  $c < 0 \Rightarrow lpha > 0$  and  $oldsymbol{eta} > 0$ 



| 4 | It is given that | 1-3i | is one | root of | the | quartic |
|---|------------------|------|--------|---------|-----|---------|
|   | equation         |      |        |         |     |         |

$$z^4 - 2z^3 + pz^2 + rz + 80 = 0$$

where p and r are real numbers.

| 4 (a) | Express $z^4 - 2z^3 + pz^2 +$ | rz + 80 as the |
|-------|-------------------------------|----------------|
|       | product of two quadratic fa   | ctors          |
|       | with real coefficients. [4 n  | narks]         |



|      | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> |      |
|      |      |
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |



| Find the value of $p$ and the value of $r$ . [2 marks] |
|--------------------------------------------------------|
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |



- $H_1$  is the locus of points such that the distance from the point (5, 0) is twice the distance from the line x=2
- 5 (a) Show that the equation of  $H_1$  can be written in the form

$$(x-1)^2 - \frac{y^2}{q} = r$$

where q and r are integers. [5 marks]

| <u> </u> |  |  |  |
|----------|--|--|--|



| 1 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |



| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |



| 5 (b) | $H_{2}$ is the hyperbola                                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------|
|       | $x^2 - y^2 = 4$                                                                                                  |
|       | Describe fully a sequence of two transformations which maps the graph of $H_2$ onto the graph of $H_1$ [4 marks] |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |



|      | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> |      |
|      |      |
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |



| <br> |  |  |
|------|--|--|
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
| <br> |  |  |
|      |  |  |
|      |  |  |



| 6     | Let $w$ be the root of the equation $z'=1$ that has the smallest argument $\alpha$ in the interval $0<\alpha<\pi$ |
|-------|-------------------------------------------------------------------------------------------------------------------|
| 6 (a) | Prove that $w^n$ is also a root of the equation $z^7 = 1$ for any integer $n$ . [1 mark]                          |
|       |                                                                                                                   |
|       |                                                                                                                   |
|       |                                                                                                                   |
|       |                                                                                                                   |
|       |                                                                                                                   |



| 6 (b) | Prove that $1 + w + w^2 + w^3 + w^4 + w^5 + w^6 = [2 \text{ marks}]$ |
|-------|----------------------------------------------------------------------|
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |
|       |                                                                      |



6 (c) Show the positions of w,  $w^2$ ,  $w^3$ ,  $w^4$ ,  $w^5$ , and  $w^6$  on the Argand diagram below. [2 marks]





| 6 (d) Prove th | at |
|----------------|----|
|----------------|----|

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$$

[4 marks]

|                                       | <br> | <br> |
|---------------------------------------|------|------|
|                                       |      | <br> |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
|                                       |      |      |
| · · · · · · · · · · · · · · · · · · · | <br> |      |



| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |



|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |



7 Three planes have equations

$$(4k + 1)x - 3y + (k - 5)z = 3$$
  
 $(k - 1)x + (3 - k)y + 2z = 1$   
 $7x - 3y + 4z = 2$ 

7 (a) The planes do NOT meet at a unique point.

Show that k = 4.5 is one possible value of k, and find the other possible value of k. [3 marks]

|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |



| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



|  | <br> | <br> |
|--|------|------|
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |



| 7 (b) | For each value of $k$ found in part (a), identify the configuration of the given planes.                                       |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | In each case fully justify your answer, stating whether or not the equations of the planes form a consistent system. [4 marks] |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |
|       |                                                                                                                                |  |  |  |  |



|   | <br> | <br> | <br> |
|---|------|------|------|
|   |      |      |      |
|   |      | <br> |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
| , |      |      |      |
|   |      |      |      |
|   |      |      |      |



|  |                                       | <br> | <br> |
|--|---------------------------------------|------|------|
|  |                                       |      |      |
|  |                                       |      |      |
|  | · · · · · · · · · · · · · · · · · · · | <br> | <br> |
|  |                                       |      |      |
|  |                                       |      |      |
|  |                                       | <br> | <br> |
|  |                                       |      |      |
|  |                                       |      |      |
|  |                                       |      |      |



|   | 20                                                                 |
|---|--------------------------------------------------------------------|
| 8 | The three roots of the equation                                    |
|   | $4x^3 - 12x^2 - 13x + k = 0$                                       |
|   | where $\boldsymbol{k}$ is a constant, form an arithmetic sequence. |
|   | Find the roots of the equation. [6 marks]                          |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |
|   |                                                                    |



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



| <br> |  | <br> |
|------|--|------|
| <br> |  | <br> |
| <br> |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
| <br> |  |      |
|      |  |      |



| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |



| 9 | The | function | f | is | defined | by |
|---|-----|----------|---|----|---------|----|
|---|-----|----------|---|----|---------|----|

$$f(x) = \frac{x(x+3)}{x+4}$$
  $(x \in \mathbb{R}, x \neq -4)$ 

| 9 (a) | Find the interval $(a, b)$ in which $f(x)$ does not |
|-------|-----------------------------------------------------|
|       | take any values.                                    |

Fully justify your answer. [5 marks]

| <br> | <br> |  |
|------|------|--|



| · · · · · · · · · · · · · · · · · · · |  |
|---------------------------------------|--|
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |



| _ |      | <br> |  |
|---|------|------|--|
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
| - |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
| - | <br> | <br> |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
| - |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |
|   |      |      |  |



| 9 (b) | Find the coordinates of the two stationary points of the graph of $y = f(x)$ [2 marks] |
|-------|----------------------------------------------------------------------------------------|
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |
|       |                                                                                        |



| 9 (c) | Show that the graph of $y = f(x)$ has an oblique asymptote and find its equation. [2 marks] |
|-------|---------------------------------------------------------------------------------------------|
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |
|       |                                                                                             |



9 (d) Sketch the graph of y = f(x) on the axes below. [4 marks]





| 10 (a) | Find the general solution of the differential |
|--------|-----------------------------------------------|
|        | equation                                      |

$$\frac{dy}{dx} + \frac{2y}{x} = \frac{x+3}{x(x-1)(x^2+3)}$$
 (x > 1)

[8 marks]



| 1 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



|   | <br> | <br> | <br> |
|---|------|------|------|
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
| , |      |      |      |
|   |      |      |      |
|   |      |      |      |



| <br>· · · · · · · · · · · · · · · · · · · | <br><del></del> |
|-------------------------------------------|-----------------|
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
| <br>                                      | <br>            |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           | <del></del>     |
|                                           |                 |
|                                           |                 |
| <br><del></del>                           | <br>            |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           |                 |
| <br>                                      | <br>            |
|                                           |                 |
|                                           |                 |
|                                           |                 |
|                                           | <br>            |
|                                           |                 |
|                                           |                 |
|                                           |                 |



| 10 (b) | Find the particular solution for which $y = 0$ when $x = 3$ |
|--------|-------------------------------------------------------------|
|        | Give your answer in the form $y = f(x)$ [2 marks]           |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |
|        |                                                             |





The lines  $l_1$ ,  $l_2$  and  $l_3$  are defined as follows.

$$l_1: \left(\mathbf{r} - \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}\right) \times \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} = 0$$

$$l_2: \left(\mathbf{r} - \begin{bmatrix} -3 \\ 2 \\ 7 \end{bmatrix}\right) \times \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = 0$$

$$l_3: \left(\mathbf{r} - \begin{bmatrix} -5 \\ 12 \\ -4 \end{bmatrix}\right) \times \begin{bmatrix} 4 \\ 0 \\ 9 \end{bmatrix} = 0$$

| 11 (a) | (i) | Explain how you know that two of the lines are parallel. [1 mark] |
|--------|-----|-------------------------------------------------------------------|
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |
|        |     |                                                                   |



| 11 (a) (ii) | Show that the perpendicular distance between these two parallel lines is 7.95 units, correct to three significant figures. [5 marks] |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |
|             |                                                                                                                                      |



| 1 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



| 11 (b) | Show that the lines $l_1$ and $l_3$ meet, and find the coordinates of their point of intersection. [5 marks] |
|--------|--------------------------------------------------------------------------------------------------------------|
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |
|        |                                                                                                              |



|   | <br> | <br> | <br> |
|---|------|------|------|
|   |      |      |      |
|   |      | <br> |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
| , |      |      |      |
|   |      |      |      |
|   |      |      |      |



| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |



| 12 (a) | Use the definition of the cosh function to prove |
|--------|--------------------------------------------------|
|        | that                                             |

| cosh <sup>-1</sup> | $(\frac{x}{2})$  | = In 1  | $\left(\frac{x+\sqrt{x^2-a^2}}{a}\right)$ | for $a > 0$ |
|--------------------|------------------|---------|-------------------------------------------|-------------|
| COSII              | $(\overline{a})$ | _ ''' \ | $\overline{a}$                            |             |

[6 marks]



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



|   | <br> | <br> | <br> |
|---|------|------|------|
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
|   |      |      |      |
| , |      |      |      |
|   |      |      |      |
|   |      |      |      |



| <br>        | · · · · · · · · · · · · · · · · · · · |             |  |
|-------------|---------------------------------------|-------------|--|
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
| <br>        | <del></del>                           |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
| <del></del> | <del></del>                           | <del></del> |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |
|             |                                       |             |  |



| 12 (b) | The formulae booklet gives the integral of |
|--------|--------------------------------------------|
|        | as                                         |
|        | $\sqrt{x^2-a^2}$ as                        |

$$\cosh^{-1}\left(\frac{x}{a}\right) \quad \text{or} \quad \ln(x + \sqrt{x^2 - a^2}) + c$$

Ronald says that this contradicts the result given in part (a).

Explain why Ronald is wrong. [2 marks]

|  |  | <br> |  |
|--|--|------|--|





| 13     | Two light elastic strings each have one end attached to a particle ${\it B}$ of mass $3c$ kg, which rests on a smooth horizontal table. |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        | The other ends of the strings are attached to the fixed points <i>A</i> and <i>C</i> , which are 8 metres apart.                        |  |  |  |  |
|        | ABC is a horizontal line.                                                                                                               |  |  |  |  |
|        | $A \leftarrow B \rightarrow C$                                                                                                          |  |  |  |  |
|        | String $AB$ has a natural length of 4 metres and a stiffness of $5c$ newtons per metre.                                                 |  |  |  |  |
|        | String $BC$ has a natural length of 1 metre and a stiffness of $c$ newtons per metre.                                                   |  |  |  |  |
|        | The particle is pulled a distance of $\frac{1}{3}$ metre from                                                                           |  |  |  |  |
|        | its equilibrium position towards <i>A</i> , and released from rest.                                                                     |  |  |  |  |
| 13 (a) | Show that the particle moves with simple harmonic motion. [8 marks]                                                                     |  |  |  |  |
|        |                                                                                                                                         |  |  |  |  |
|        |                                                                                                                                         |  |  |  |  |
|        |                                                                                                                                         |  |  |  |  |
|        |                                                                                                                                         |  |  |  |  |



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
| <br> | <br> | <br> |  |
| <br> | <br> |      |  |
|      |      |      |  |
|      |      |      |  |
| <br> | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |
| <br> | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
| <br> | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |





| 13 (b) | Find the speed of the particle when it is at a                   |
|--------|------------------------------------------------------------------|
|        | point $P$ , a distance $\frac{1}{4}$ metre from the equilibrium  |
|        | position. Give your answer to two significant figures. [4 marks] |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |



| <br>            | ·····        | <br> |
|-----------------|--------------|------|
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br>            | ·····        | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br>            |              | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br>            |              | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br>            | <del> </del> | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
|                 |              | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br><del></del> |              | <br> |
|                 |              |      |
|                 |              |      |
|                 |              |      |
| <br>            |              | <br> |



| 14 (a) | Given that                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------|
|        | sinh(A + B) = sinh A cosh B + cosh A sinh B                                                                          |
|        | express $\sinh (m + 1)x$ and $\sinh (m - 1)x$ in terms of $\sinh mx$ , $\cosh mx$ , $\sinh x$ and $\cosh x$ [1 mark] |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |
|        |                                                                                                                      |



| 14 (b) | Hence find the sum of the series                                  |
|--------|-------------------------------------------------------------------|
|        | $C_n = \cosh x + \cosh 2x + \dots + \cosh nx$                     |
|        | in terms of $\sinh x$ , $\sinh nx$ and $\sinh (n + 1)x$ [5 marks] |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |
|        |                                                                   |



| <br> |                                       |              |
|------|---------------------------------------|--------------|
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       | <del> </del> |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      | · · · · · · · · · · · · · · · · · · · |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> |                                       |              |
| <br> |                                       |              |
|      |                                       |              |
|      |                                       |              |
| m    |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
| <br> | · · · · · · · · · · · · · · · · · · · |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |
|      |                                       |              |



| · |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |

# **END OF QUESTIONS**





| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| 8                  |      |  |
| 9                  |      |  |
| 10                 |      |  |
| 11                 |      |  |
| 12                 |      |  |
| 13                 |      |  |
| 14                 |      |  |
| TOTAL              |      |  |

#### Copyright information

For confidentiality purposes, all acknowledgements of thirdparty copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2020 AQA and its licensors. All rights reserved.

#### GB/VW/Jun20/7367/1/E2



