

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature I declare this is my own work.

A-level FURTHER MATHEMATICS

Paper 1

7367/1

Friday 22 May 2020 Morning

Time allowed: 2 hours

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

For this paper you must have:

- an AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

INSTRUCTIONS

- Use black ink or black ball-point pen.
 Pencil should only be used for drawing.
- Answer ALL questions.
- You must answer each question in the space provided for that question.
- Do NOT write on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

ADVICE

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the space provided.

Which of the integrals below is NOT an improper integral?

Circle your answer. [1 mark]

$$\int_0^\infty e^{-x} dx$$

$$\int_0^2 \frac{1}{1-x^2} \, \mathrm{d}x$$

$$\int_0^1 \sqrt{x} \, \mathrm{d}x$$

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

Which one of the matrices below represents a rotation of 90° about the x-axis?

Circle your answer. [1 mark]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

3 The quadratic equation

 $ax^2 + bx + c = 0$ $(a, b, c \in \mathbb{R})$ has real roots α and β .

One of the four statements below is incorrect.

Which statement is INCORRECT?

Tick (✓) ONE box. [1 mark]

$$c=0\Rightarrow lpha=0 ext{ or } eta=0$$

It is given that 1 – 3i is one root of the quartic equation

$$z^4 - 2z^3 + pz^2 + rz + 80 = 0$$

where p and r are real numbers.

4(a) Express $z^4 - 2z^3 + pz^2 + rz + 80$ as the product of two quadratic factors with real coefficients. [4 marks]

4(b) Find the value of p and the value of r. [2 marks]

BLANK PAGE

- H_1 is the locus of points such that the distance from the point (5, 0) is twice the distance from the line x = 2
- 5(a) Show that the equation of H_1 can be written in the form

$$(x-1)^2 - \frac{y^2}{q} = r$$

where q and r are integers. [5 marks]

·	
·	

5(b) H_2 is the hyperbola

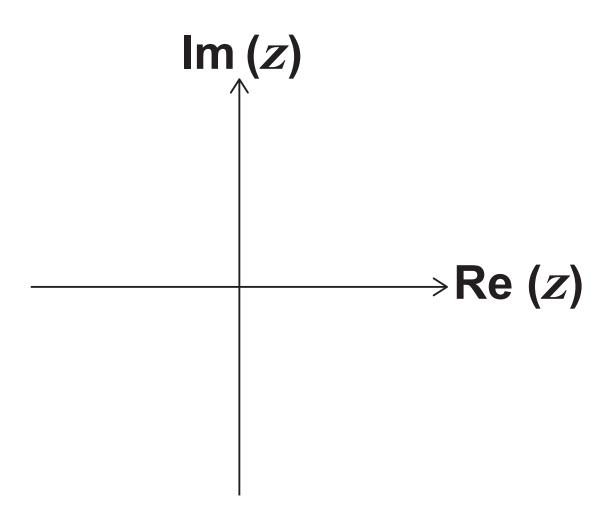
$$x^2 - y^2 = 4$$

Describe fully a sequence of two transformations which maps the graph of H_2 onto the graph of H_1 [4 marks]

:
: :
:

6	Let w be the root of the equation $z^7=1$ that has the smallest argument α in the interval $0<\alpha<\pi$
6 (a)	Prove that w^n is also a root of the equation $z^7 = 1$ for any integer n . [1 mark]


6(b) Prove that

$$1 + w + w^{2} + w^{3} + w^{4} + w^{5} + w^{6} = 0$$
[2 marks]

6 (c) Show the positions of w, w^2 , w^3 , w^4 , w^5 , and w^6 on the Argand diagram below. [2 marks]

6(d) Prove that

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$$

[4 marks]

7 Three planes have equations

$$(4k + 1)x - 3y + (k - 5)z = 3$$
$$(k - 1)x + (3 - k)y + 2z = 1$$
$$7x - 3y + 4z = 2$$

7 (a) The planes do NOT meet at a unique point.

Show that k = 4.5 is one possible value of k, and find the other possible value of k. [3 marks]

	· · · · · · · · · · · · · · · · · · ·			1
	 		· · · · · · · · · · · · · · · · · · ·	:
				:

 	· · · · · · · · · · · · · · · · · · ·	

7(b)	For each value of k found in part (a), identify the configuration of the given planes.
	In each case fully justify your answer, stating whether or not the equations of the planes form a consistent system. [4 marks]

(7
7	3

The three roots of the equation

$$4x^3 - 12x^2 - 13x + k = 0$$

where k is a constant, form an arithmetic sequence.

Find the roots of the equation. [6 marks]

· · · · · · · · · · · · · · · · · · ·		
	 	

		
	: : : : : : : : : : : : : : : : : : :	

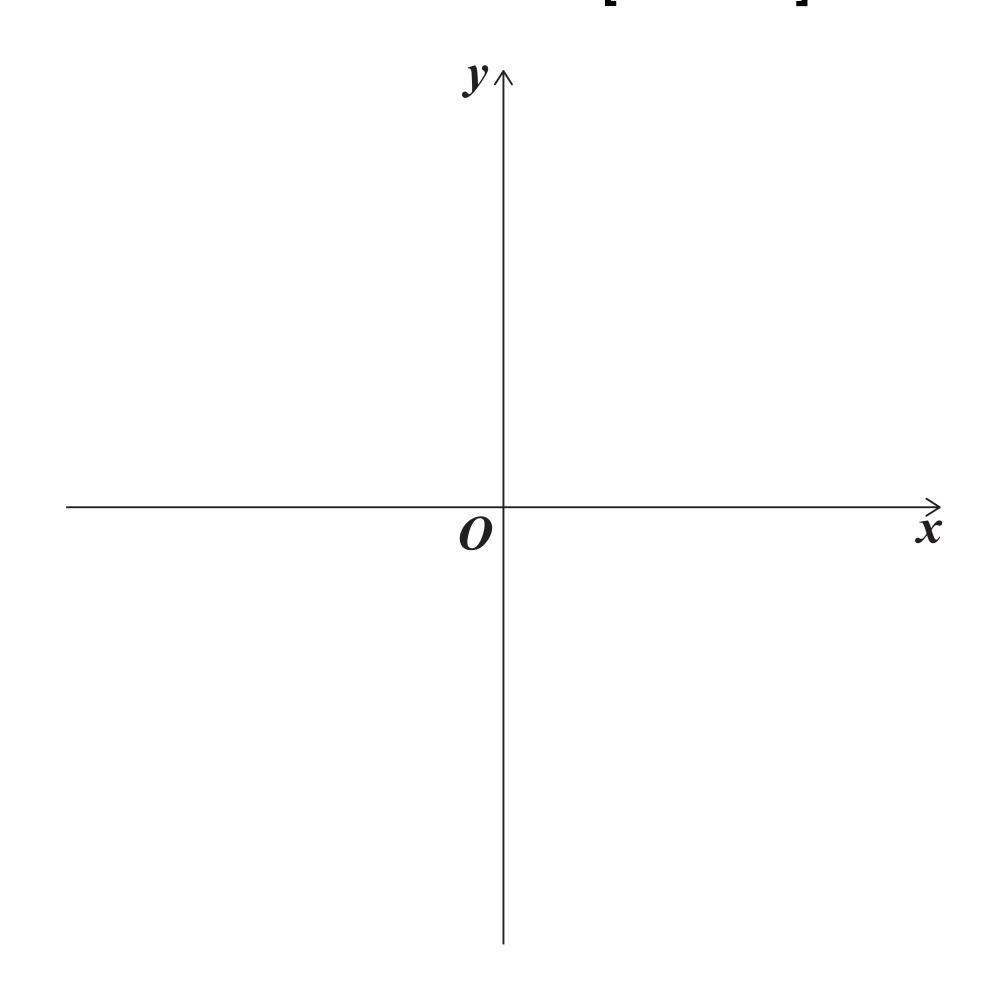
The function f is defined by

$$f(x) = \frac{x(x+3)}{x+4}$$
 $(x \in \mathbb{R}, x \neq -4)$

9 (a) Find the interval (a, b) in which f(x) does not take any values.

Fully justify your answer. [5 marks]

	: : :
	: : : : : : : : : : : : : : : : : : :
	
	


9(b)	Find the coordinates of the two stationary points of the graph of $y = f(x)$ [2 marks]

9 (c)	Show that the graph of $y = f(x)$ has an oblique asymptote and find its equation. [2 marks]

9(d) Sketch the graph of y = f(x) on the axes below. [4 marks]

10 (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2y}{x} = \frac{x+3}{x(x-1)(x^2+3)} \qquad (x>1)$$

[8 marks]

_ 		· · · · · · · · · · · · · · · · · · ·
	 	- : - : - : - : - : - : - : - : - : - :

10(b)	Find the particular solution for
• •	which $y = 0$ when $x = 3$

Give your answer in the form y = f(x) [2 marks]

The lines l_1 , l_2 and l_3 are defined as follows.

$$l_{1}: \left(\mathbf{r} - \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}\right) \times \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} = 0$$

$$l_2: \left(\mathbf{r} - \begin{bmatrix} -3 \\ 2 \end{bmatrix}\right) \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 0$$

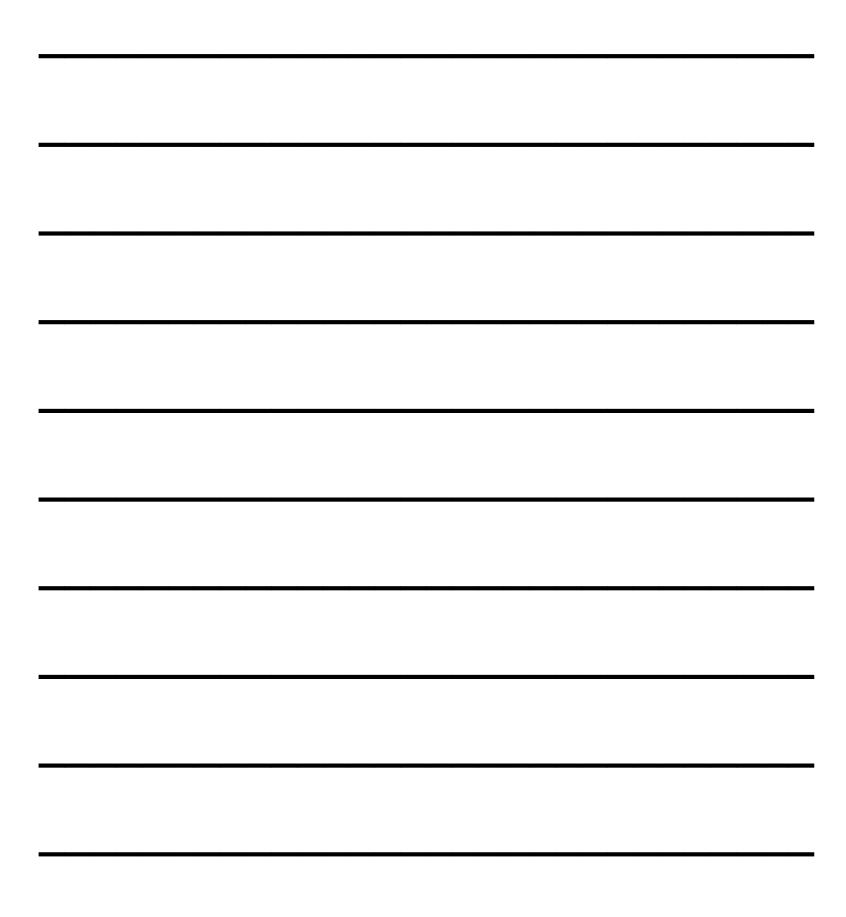
$$l_3: \left(\mathbf{r} - \begin{bmatrix} -5 \\ 12 \end{bmatrix} \right) \times \begin{bmatrix} 4 \\ 0 \\ 9 \end{bmatrix} = 0$$

11 (a)	(ii)	Show that the perpendicular distance between these two parallel lines is 7.95 units, correct to three significant figures. [5 marks]

 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	

11(b)	Show that the lines l_1 and l_3 meet and find the coordinates of their point of intersection. [5 marks]



12 (a) Use the definition of the cosh function to prove that

$$\cosh^{-1}\left(\frac{x}{a}\right) = \ln\left(\frac{x + \sqrt{x^2 - a^2}}{a}\right)$$

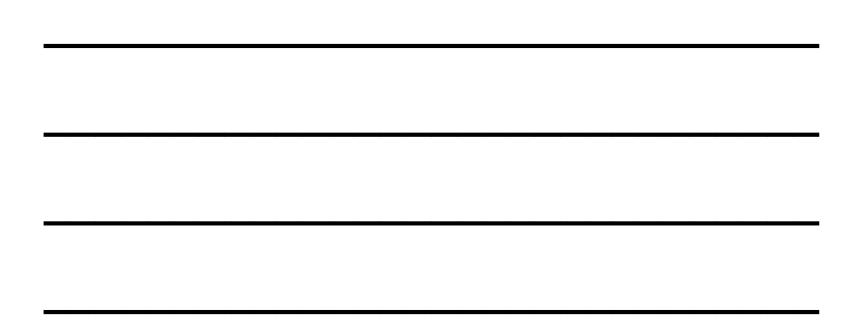
for a > 0

[6 marks]

· · · · · · · · · · · · · · · · · · ·		
	 	

:
: :
:

· · · · · · · · · · · · · · · · · · ·		
	 	


12(b) The formulae booklet gives the integral of $\frac{1}{\sqrt{x^2-a^2}}$ as

$$\cosh^{-1}\left(\frac{x}{a}\right)$$

or
$$\ln(x + \sqrt{x^2 - a^2}) + c$$

Ronald says that this contradicts the result given in part (a).

Explain why Ronald is wrong. [2 marks]

13

Two light elastic strings each have one end attached to a particle *B* of mass 3*c* kg, which rests on a smooth horizontal table.

The other ends of the strings are attached to the fixed points *A* and *C*, which are 8 metres apart.

ABC is a horizontal line.

String AB has a natural length of 4 metres and a stiffness of 5c newtons per metre.

String *BC* has a natural length of 1 metre and a stiffness of *c* newtons per metre.

The particle is pulled a distance $\frac{1}{3}$ of $\frac{1}{3}$ metre from its equilibrium position towards A, and released from rest.

simple harmonic motion. [8 marks]

:
: :
:

	
	· · · · · · · · · · · · · · · · · · ·

13(b)	Find the speed of the particle when it is at a point P , a distance $\frac{1}{4}$ metre from the equilibrium position. Give your answer to two significant figures. [4 marks]

14 (a) Given that

sinh(A + B) =

sinh A cosh B + cosh A sinh B

express sinh(m + 1)x and sinh(m - 1)x in terms of sinh(mx), cosh(mx), sinh(x) and cosh(x) [1 mark]

14(b) Hence find the sum of the series

 $C_n = \cosh x + \cosh 2x + \dots$ + $\cosh nx$

in terms of sinh x, sinh nx and sinh (n + 1)x [5 marks]

END OF QUESTIONS

BLANK PAGE

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
TOTAL		

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

GB/VW/Jun20/7367/1/E2

