

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

A-level FURTHER MATHEMATICS

Paper 2

7367/2

Thursday 4 June 2020 Afternoon

Time allowed: 2 hours

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

- You must have the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

INSTRUCTIONS

- Use black ink or black ball-point pen.
 Pencil should only be used for drawing.
- Answer ALL questions.
- You must answer each question in the space provided for that question.
- Do NOT write on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

ADVICE

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

Three of the four expressions below are equivalent to each other.

Which of the four expressions is NOT equivalent to any of the others?

Circle your answer. [1 mark]

$$a \times (a + b)$$

$$(a + b) \times b$$

$$(a - b) \times b$$

$$\mathbf{a} \times (\mathbf{a} - \mathbf{b})$$

Given that $\arg(a+bi)=\varphi$, where a and b are positive real numbers and $0<\varphi<\frac{\pi}{2}$, three of

the following four statements are correct.

Which statement is NOT correct?

Tick (✓) ONE box. [1 mark]

arg
$$(-a-bi) = \pi - \varphi$$

Find the gradient of the tangent to the curve

$$y = \sin^{-1} x$$

at the point where
$$x = \frac{1}{5}$$

Circle your answer. [1 mark]

$$\frac{5\sqrt{6}}{12}$$
 $\frac{2\sqrt{6}}{5}$ $\frac{4\sqrt{3}}{25}$ $\frac{25}{24}$

The matrices A and B are defined as follows:

$$\mathbf{A} = \begin{bmatrix} x+1 & 2 \\ x+2 & -3 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} x - 4 & x - 2 \\ 0 & -2 \end{bmatrix}$$

Show that there is a value of x for which AB = kI, where I is the 2×2 identity matrix and k is an integer to be found. [3 marks]

$$\frac{2x+3}{x-1} \le x+5$$

[5 marks]

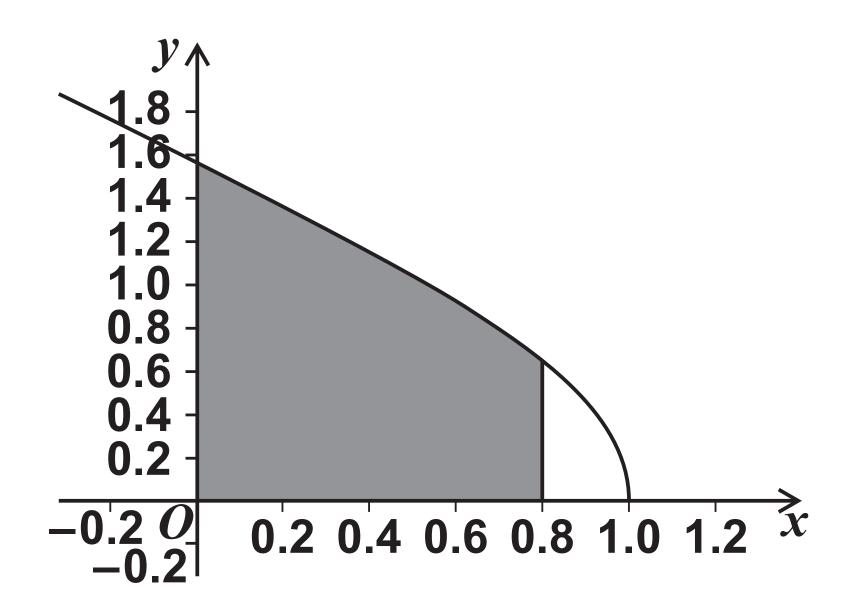
·	

 		
		
		· · · · · · · · · · · · · · · · · · ·

BLANK PAGE

6	Find the sum of all the integers from 1 to 999 inclusive that are not square or cube numbers. [5 marks]

<u> </u>	


		:
		
 		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

BLANK PAGE

The diagram shows part of the graph of $y = \cos^{-1} x$

The finite region enclosed by the graph of $y = \cos^{-1} x$, the y-axis, the x-axis and the line x = 0.8 is rotated by 2π radians about the x-axis.

Use Simpson's rule with five ordinates to estimate the volume of the solid formed. Give your answer to four decimal places. [5 marks]

 	· · · · · · · · · · · · · · · · · · ·	

		
	:	
		

BLANK PAGE

8 (a) Factorise

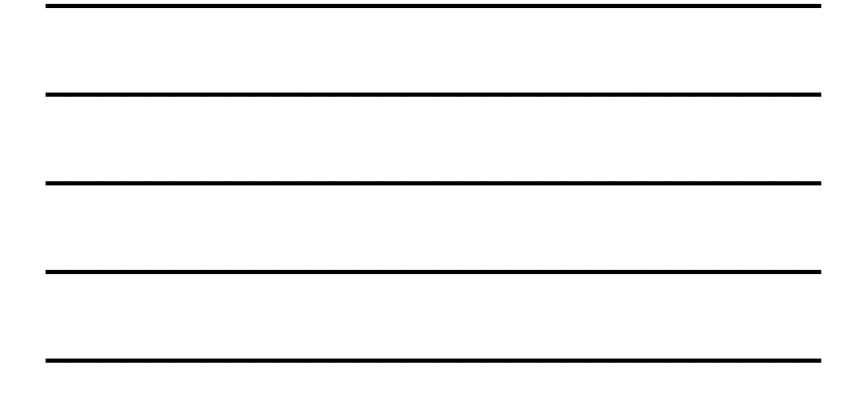
$$\begin{vmatrix} 2a+b+x & x+b & x^2+b^2 \\ 0 & a & -a^2 \\ a+b & b & b^2 \end{vmatrix}$$

as fully as possible. [6 marks]

	· · · · · · · · · · · · · · · · · · ·
	 - : - : - : - : - : - : - : - : - : - :
 	· · · · · · · · · · · · · · · · · · ·

:
: :
:

		:
	· · · · · · · · · · · · · · · · · · ·	: · · · · · · · · · · · · · · · · · · ·



8(b) The matrix M is defined by

$$\mathbf{M} = \begin{bmatrix} 13 + x & x + 3 & x^2 + 9 \\ 0 & 5 & -25 \\ 8 & 3 & 9 \end{bmatrix}$$

Under the transformation represented by M, a solid of volume 0.625 m³ becomes a solid of volume 300 m³

Use your answer to part (a) to find the possible values of x. [3 marks]

 	 	-
 	 · · · · · · · · · · · · · · · · · · ·	

The matrix
$$C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, where a and b are positive real numbers,

and
$$C^2 = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

Use C to show that $\cos \frac{\pi}{12}$ can be

written in the form $\frac{\sqrt{\sqrt{m}+n}}{2}$, where m and n are integers.

[7 marks]

· · · · · · · · · · · · · · · · · · ·		
	 	

· · · · · · · · · · · · · · · · · · ·		
	 	

<u> </u>	

BLANK PAGE

10

The sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 0$$
 $u_{n+1} = \frac{5}{6 - u_n}$

Prove by induction that, for all integers $n \ge 1$,

$$u_n=\frac{5^n-5}{5^n-1}$$

[6 marks]

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	-			

· · · · · · · · · · · · · · · · · · ·		
	 	

· · · · · · · · · · · · · · · · · · ·		
	 	

BLANK PAGE

11 (a)	Starting from the series given in
	the formulae booklet, show that
	the general term of the Maclaurin
	series for

$$\frac{\sin x}{x} - \cos x$$

is

$$(-1)^{r+1} \frac{2r}{(2r+1)!} x^{2r}$$

[4 marks]

	· · · · · · · · · · · · · · · · · · ·
	 - : - : - : - : - : - : - : - : - : - :

11(b) Show that

$$\lim_{x \to 0} \left[\frac{\frac{\sin x}{x} - \cos x}{1 - \cos x} \right] = \frac{2}{3}$$

[4 marks]

 		- : : : : : : : : : : : : : : : : : : :	: : : : : : : : : : : : : : : : : : :
	 		: :
	 		
 · · · · · · · · · · · · · · · · · · ·		:	÷

12 (a) Given that
$$I = \int_{a}^{b} e^{2t} \sin t \, dt$$
, show that

$$I = [qe^{2t}\sin t + re^{2t}\cos t]_a^b$$

where q and r are rational numbers to be found. [6 marks]

,	

12(b) A small object is initially at rest. The subsequent motion of the object is modelled by the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} + v = 5\mathrm{e}^t \sin t$$

where v is the velocity at time t.

Find the speed of the object when $t = 2\pi$, giving your answer in exact form. [6 marks]

		::
		: : : : : : : : : : : : : : : : : : :
· · · · · · · · · · · · · · · · · · ·		:
		::
		: : : : : : : : : : : : : : : : : : : :

		:
	 	:
		:
·	 	: :
		i i
		: : : : : : : : : : : : : : : : : : :
	 	:i

Charlotte is trying to solve this mathematical problem:

Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 10e^{-2x}$$

Charlotte's solution starts as follows:

Particular integral: $y = \lambda e^{-2x}$

SO

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\lambda \mathrm{e}^{-2x}$$

and

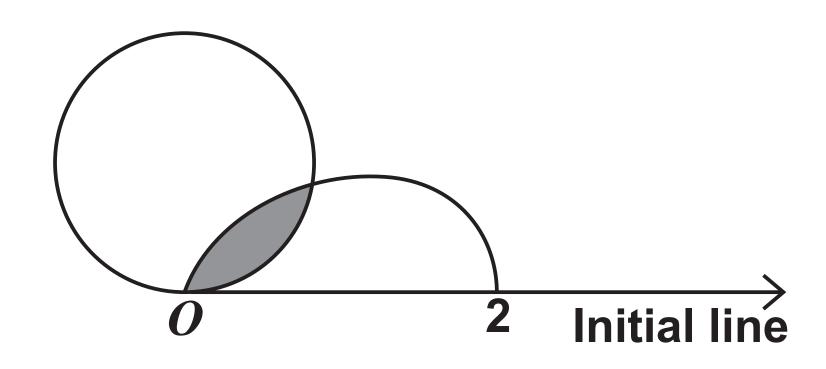
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\lambda \,\mathrm{e}^{-2x}$$

13 (a)	Show that Charlotte's method will fail to find a particular integral for the differential equation. [2 marks]		

	: :
	: :

13(b)	Explain how Charlotte should have started her solution differently and find the general solution of the differential equation. [8 marks]

:
: :
:

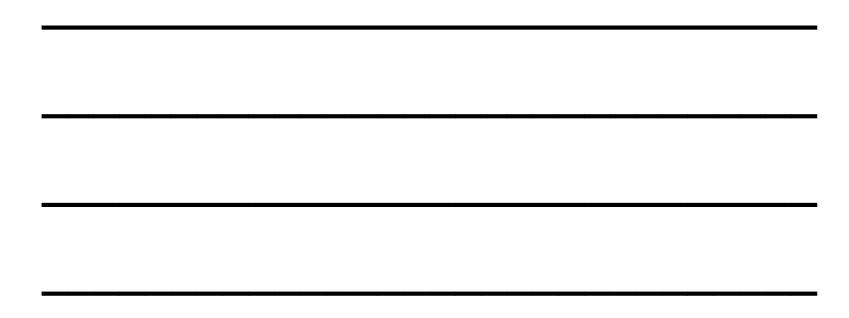

		:
	· · · · · · · · · · · · · · · · · · ·	: · · · · · · · · · · · · · · · · · · ·

The diagram shows the polar curve C_1 with equation

$$r = 2 \sin \theta$$

The diagram also shows part of the polar curve C_2 with equation $r = 1 + \cos 2\theta$

14(a) On the diagram above, complete the sketch of C_2 [2 marks]



14(b) Show that the area of the region shaded in the diagram is equal to

$$k\pi + m\alpha - \sin 2\alpha + q\sin 4\alpha$$

where
$$\alpha = \sin^{-1}\left(\frac{\sqrt{5}-1}{2}\right)$$
, and

k, m and q are rational numbers. [9 marks]

· · · · · · · · · · · · · · · · · · ·		
	 	

:
: :
:

BLANK PAGE

15	The points $A(7, 2, 8)$, $B(7, -4, 0)$ and $C(3, 3.2, 9.6)$ all lie in the plane Π .
15 (a)	Find a Cartesian equation of the plane Π . [3 marks]

· · · · · · · · · · · · · · · · · · ·		
	 	

BLANK PAGE

15(b) The line L_1 has equation

$$r = \begin{bmatrix} 5 \\ -0.4 \\ 4.8 \end{bmatrix} + \mu \begin{bmatrix} 15 \\ 3 \\ 4 \end{bmatrix}$$

15(b) (i) Show that L_1 lies in the plane Π . [2 marks]

15(b) (ii) Show that every point on L_1 is equidistant from B and C. [4 marks]

 · · · · · · · · · · · · · · · · · · ·	: : : : : : : : : : : : : : : : : : :	

15 (c)	The line L_2 lies in the plane Π , and every point on L_2 is equidistant from A and B .			
	Find an equation of the line L_2 [4 marks]			

				
		· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·
				

15(d)	The points <i>A</i> , <i>B</i> and <i>C</i> all lie on a circle <i>G</i> . The point <i>D</i> is the centre of circle <i>G</i> .
	Find the coordinates of <i>D</i> . [3 marks]

		
 		
		· · · · · · · · · · · · · · · · · · ·
		:

END OF QUESTIONS

BLANK PAGE

For Examiner's Use				
Mark				

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

GB/VW/Jun20/7367/2/E3

