AQA

Surname

\qquad
Other Names
Centre Number
Candidate Number \qquad
Candidate Signature
I declare this is my own work.

AS

CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

7404/1

Monday 18 May 2020 Morning
Time allowed: 1 hour 30 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

You are advised to spend about 65 minutes on SECTION A and 25 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- |\quad This question is about atomic structure.

| 0 | 1. | 1 |
| :--- | :--- | :--- | There is a general trend for an increase in ionisation energy across Period 3.

Give ONE example of an element that deviates from this trend.

Explain why this deviation occurs. [3 marks]
Element \qquad
Explanation
\qquad
\qquad
\qquad
\qquad

| 0 | 1. | 2 |
| :--- | :--- | :--- | to represent the process that occurs when the THIRD ionisation energy of sodium is measured. [1 mark]

[Turn over]

01 . 3 FIGURE 1 shows the successive ionisation energies of a Period 3 element, X .

FIGURE 1
Ionisation
energy
/ kJ mol ${ }^{-1}$

Identify element X.

Explain your choice. [3 marks]
Element
Explanation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 2 |
| :--- | :--- | :--- |\quad This question is about a titration.

A student dissolves an unknown mass of sodium hydroxide in water to make $200 \mathrm{~cm}^{3}$ of an aqueous solution.

A $25.0 \mathrm{~cm}^{3}$ sample of this sodium hydroxide solution is placed in a conical flask and is titrated with
$0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid.
The equation for this reaction is shown.
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
TABLE 1 shows the results of the titrations.

TABLE 1

Titration	Rough	1	2	3
Final reading $/ \mathrm{cm}^{3}$	20.75	40.35	21.05	40.60
Initial reading $/ \mathrm{cm}^{3}$	0.00	20.75	1.20	21.05
Titre $/ \mathrm{cm}^{3}$	20.75	19.60	19.85	19.55

| 0 | 2 | 1 |
| :--- | :--- | :--- | to make the original solution. [5 marks]

Mass of sodium hydroxide g

| 0 | 2 | 2 |
| :--- | :--- | :--- | with sulfuric acid before starting the titration. After filling, the student forgets to remove the funnel from the top of the burette.

Suggest why this might affect the titre volume recorded. [1 mark]

| 0 | 2 | 3 |
| :--- | :--- | :--- | rather than a beaker for the titration. [1 mark]

\qquad
\qquad
\qquad
\qquad

| 0 | 3 |
| :--- | :--- | :--- |\quad This question is about time of flight (TOF) mass spectrometry.

| 0 | 3 | 1 |
| :--- | :--- | :--- | [2 marks]

[Turn over]

0	3	2
A sample of krypton is ionised using electron		

The mass spectrum of this sample of krypton has four peaks.

TABLE 2 shows data from this spectrum.

TABLE 2

m / z	82	83	84	86
Relative intensity	6	1	28	8

Calculate the relative atomic mass $\left(A_{r}\right)$ of this sample of krypton.

Give your answer to 1 decimal place. [2 marks]
A_{r} \qquad
[Turn over]

0 3. 3 In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).

The kinetic energy of an ion is given by the equation $K E=\frac{1}{2} m v^{2}$

Where:
KE = kinetic energy / J
m = mass / kg
$v=$ speed $/ \mathrm{m} \mathrm{s}^{-1}$
In a TOF mass spectrometer, each ${ }^{84} \mathrm{Kr}^{+}$ion is accelerated to a kinetic energy of $4.83 \times 10^{-16} \mathrm{~J}$ and the time of flight is $1.72 \times 10^{-5} \mathrm{~s}$

Calculate the length, in metres, of the TOF flight tube.

The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
[4 marks]

0	4	This question is about enthalpy changes.

0	4	.1
1		

BLANK PAGE
[Turn over]

| 0 | 4 | .2 |
| :--- | :--- | :--- | A student determines the enthalpy change for the reaction between calcium carbonate and hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The student follows this method:

- measure out $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a $100 \mathrm{~cm}^{3}$ glass beaker
- weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid
- stir the mixture with a thermometer
- record the maximum temperature reached.

The student uses the data to determine a value for the enthalpy change.

Explain how the experimental method and use of apparatus can be improved to provide more accurate data.

Describe how this data from the improved method can be used to determine an accurate value for the temperature change. [6 marks]

[Turn over]

[Turn over]

04 . 3 In a different experiment $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid are reacted with $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide.
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The initial temperature of each solution is $18.5^{\circ} \mathrm{C}$

Calculate the maximum final temperature of the reaction mixture.

Assume that the specific heat capacity of the reaction mixture, $c=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$

Assume that the density of the reaction mixture $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$
[5 marks]

Final temperature ${ }^{\circ} \mathrm{C}$
[Turn over]

| 0 | 4 | 4 |
| :--- | :--- | :--- | Suggest how, without changing the apparatus, the experiment in Question 04.3 could be improved to reduce the percentage uncertainty in the temperature change. [1 mark]

| 0 | 5 | This question is about Group 2 elements and |
| :--- | :--- | :--- | their compounds.

| 0 | 5 | 1 |
| :--- | :--- | :--- | is higher than the melting point of sodium. [2 marks]

[Turn over]

| 0 | 5. | 2 |
| :--- | :--- | :--- | used as the reducing agent in the extraction of titanium.

Explain, in terms of oxidation states, why magnesium is the reducing agent. [2 marks]

Equation

Explanation
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 3 |
| :--- | :--- | :--- | sodium hydroxide is added to separate solutions of magnesium chloride and barium chloride. [2 marks]

Observation with magnesium chloride

Observation with barium chloride

[Turn over]

| 0 | 6 | This question is about shapes of molecules |
| :--- | :--- | :--- | and ions.

Draw the shape of NCl_{3} and of $\mathrm{NCl}_{4}{ }^{+}$
Include any lone pairs of electrons that influence the shape.

Name the shape of NCl_{3}
State and explain the bond angle in $\mathrm{NCl}_{4}{ }^{+}$ [5 marks]

Shape of NCl_{3}

Shape of $\mathrm{NCl}_{4}{ }^{+}$

Name of shape of NCl_{3}

Bond angle in $\mathrm{NCl}_{4}{ }^{+}$

Explanation of bond angle in $\mathrm{NCl}_{4}{ }^{+}$

\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 7 | This question is about Group 7 elements and |
| :--- | :--- | :--- | their compounds.

| 0 | 7.1 | Chlorine is used to treat water even though it |
| :--- | :--- | :--- | is toxic to humans.

Give ONE reason why water is treated with chlorine.

Explain why chlorine is added to water even though it is toxic.

Give an equation for the reaction of chlorine with cold water. [3 marks]

Reason

Explanation

\qquad
\qquad

Equation

[Turn over]

| 0 | 7.2 | Solid sodium iodide reacts with concentrated |
| :--- | :--- | :--- | sulfuric acid to form iodine and sulfur in a redox reaction.

Give a half-equation to show the conversion of iodide ions to iodine.

Give a half-equation to show the conversion of sulfuric acid to sulfur.

Give an overall equation for this redox reaction.

Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid. [4 marks]

Half-equation for the conversion of iodide ions to iodine

Half-equation for the conversion of sulfuric acid to sulfur

Overall equation

Other sulfur-containing reduction product

[Turn over]

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0	7	3

Suggest why an excess is used. [1 mark]
\qquad
\qquad
\qquad

| 0 | 7.4 | Calculate the amount, in moles, of silver |
| :--- | :--- | :--- | iodide obtained.

$$
M_{\mathrm{r}}(\mathrm{Agl})=234.8
$$

[1 mark]

Amount of silver iodide \qquad mol
[Turn over]

0 7. 5 Calculate, using your answer to Question 07.4, the mass, in grams, of sodium iodide in the mixture.
$M_{\mathrm{r}}(\mathrm{NaI})=149.9$
[1 mark]

Mass of sodium iodide g

| 0 | 7.6 |
| :--- | :--- | Calculate, using your answer to Question 07.5, the percentage by mass of sodium chloride in the mixture. [2 marks]

Percentage of sodium chloride
[Turn over]

This question is about a volatile liquid, A.

\square
A student does an experiment to determine the relative molecular
mass $\left(M_{r}\right)$ of liquid A using the apparatus shown in FIGURE 2, on the
opposite page.
The student injects a sample of A into a gas syringe in an oven.
At the temperature of the oven, liquid A vaporises.
FIGURE 2

[Turn over]
TABLE 3 shows the student's results.

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	$0.0 \mathrm{~cm}^{3}$
Volume reading on gas syringe after injecting	$178.0 \mathrm{~cm}^{3}$
Pressure of gas in syringe	100 kPa
Temperature of oven	$120^{\circ} \mathrm{C}$

Calculate the M_{r} of A.

[^0]M_{r}
[Turn over]
The student noticed that some of the liquid injected into the gas
syringe did NOT vaporise. Explain the effect that this has on the M_{r} calculated by the student. [2 marks] N ∞
TABLE 3 is repeated here.

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	$0.0 \mathrm{~cm}^{3}$
Volume reading on gas syringe after injecting	$178.0 \mathrm{~cm}^{3}$
Pressure of gas in syringe	100 kPa
Temperature of oven	${ }^{\circ} \mathrm{C}$

fine
Each reading on the balance used to record the mass of the
needle syringe and contents had an uncertainty of $\pm 0.001 \mathrm{~g}$
Calculate the percentage uncertainty in the mass of liquid A
injected in this experiment. [1 mark]
$\stackrel{m}{\infty}$

Percentage uncertainty
[Turn over]

SECTION B

Answer ALL questions in this section.
Only ONE answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do NOT use additional sheets for this working.

| 0 | 9 | Which atom has the smallest number of |
| :--- | :--- | :--- | neutrons? [1 mark]

0
A ${ }^{3} \mathrm{H}$B ${ }^{4} \mathrm{He}$C ${ }^{5} \mathrm{He}$D ${ }^{4} \mathrm{Li}$
[Turn over]

| 1 | 0 |
| :--- | :--- | Which species contains bonds that have different polarities? [1 mark]

0
A $\mathrm{NH}_{4}{ }^{+}$
○
B CCl_{4}C $\mathrm{CH}_{3} \mathrm{Cl}$D $\mathrm{H}_{3} \mathrm{O}^{+}$

| 1 | 1 |
| :--- | :--- | Which compound has hydrogen bonding? [1 mark]

$\bigcirc \quad$ A $\quad \mathbf{N a H}$
$\bigcirc \quad B \quad \mathbf{N H}_{3}$
$\bigcirc \quad \mathrm{C} \quad \mathrm{HI}$
$\bigcirc \quad \mathrm{D} \quad \mathbf{S i H}_{\mathbf{4}}$
[Turn over]

| 1 | 2 |
| :--- | :--- | Which reaction has an enthalpy change equal to the standard enthalpy of formation of lithium fluoride? [1 mark]

$$
\mathrm{A} \quad \mathrm{Li}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiF}(\mathrm{~s})
$$

B $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \longrightarrow \mathrm{LiF}(\mathrm{s})$

C $\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \longrightarrow \mathrm{LiF}(\mathrm{s})$D $\mathrm{Li}(\mathrm{s})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiF}(\mathrm{s})$

1	3
$\mathrm{NO}_{2}-$ ions can be reduced in acidic solution	

How many electrons are gained when each $\mathrm{NO}_{2}{ }^{-}$ion is reduced? [1 mark]
$\bigcirc \quad A \quad 1$B 2C 3D 4
[Turn over]

| 1 | 4 |
| :--- | :--- | Which is the electron configuration of an atom with ONLY TWO unpaired electrons? [1 mark]

A $\mathbf{1} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{\mathbf{3}}$B $\quad \mathbf{1} \mathbf{s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2 p} \mathbf{p}^{\mathbf{4}}$C $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
0
D $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$

| 1 | 5 |
| :--- | :--- | Which represents the correct order of increasing radius of the ions? [1 mark]A F- $\mathrm{O}^{2-} \quad \mathrm{Li}^{+} \quad \mathrm{Be}^{2+}$$B \mathrm{Li}^{+} \quad \mathrm{Be}^{2+} \quad \mathrm{O}^{2-} \quad \mathrm{F}^{-}$$C \mathrm{Be}^{2+} \mathrm{Li}^{+} \quad \mathrm{F}^{-} \quad \mathrm{O}^{2-}$D $\mathrm{O}^{2-} \quad \mathrm{F}^{-} \quad \mathrm{Li}^{+} \quad \mathrm{Be}^{2+}$

[Turn over]

| 1 | 6 | Which compound contains a co-ordinate |
| :--- | :--- | :--- | bond? [1 mark]

$\bigcirc \quad$ A HF
$\bigcirc \quad B \quad \mathbf{N H}_{3}$
$\bigcirc \quad \mathrm{C} \mathrm{CHCl}_{3}$
$\bigcirc \quad \mathrm{D} \mathrm{NH}_{4} \mathbf{C l}$

| 1 | 7 |
| :--- | :--- | Which property increases down Group 7? [1 mark]

A ability to oxidise a given reducing
agentB boiling pointC electronegativity

D first ionisation energy
[Turn over]

| 1 | 8 |
| :--- | :--- | Which of these elements has the highest melting point? [1 mark]

\bigcirc A Argon

0
B Chlorine
$\bigcirc \quad$ C Silicon
\bigcirc D Sulfur

| 1 | 9 |
| :--- | :--- | :--- | Which statement is NOT always correct for a reaction at equilibrium?

reactants \rightleftharpoons products
[1 mark]

A The concentrations of the
reactants and products are equal.

B The equilibrium can be achieved starting from the reactants.

C The equilibrium can be achieved starting from the products.

D The rate of the forward reaction is equal to the rate of the reverse reaction.

[Turn over]

2	0

$\mathrm{Fe}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{s})$
$\Delta H=-272 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\Delta H=-822 \mathrm{~kJ} \mathrm{~mol}^{-1}$
What is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction?
$2 \mathrm{FeO}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
[1 mark]
$\bigcirc \quad A+550$B -278C -1094D -1372

| 2 | 1 | Which compound contains chlorine in an |
| :--- | :--- | :--- | oxidation state of +1 ? [1 mark]

$\bigcirc \quad A \quad C_{2} \mathrm{O}$
$\bigcirc \quad$ B KClO_{3}
$\bigcirc \quad \mathrm{C} \mathrm{ClF}_{3}$
$\bigcirc \mathrm{D} \mathbf{C C l}_{\mathbf{4}}$
[Turn over]

| 2 | 2 | Which equation shows a redox reaction that |
| :--- | :--- | :--- | does NOT occur? [1 mark]

$$
\begin{gathered}
\mathrm{A} \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \\
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq})
\end{gathered}
$$$\mathrm{B} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KI}(\mathrm{aq}) \longrightarrow$

$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})$
0
C $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow$ $\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})$

O
D $\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow$
$\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq})$

| 2 | 3 | Which molecule has a permanent dipole? |
| :--- | :--- | :--- | [1 mark]

$\bigcirc \quad \mathrm{A} \mathrm{CF}_{4}$
$\bigcirc \quad B P_{5}$
$\bigcirc \quad \mathrm{C} \mathbf{C O}_{2}$
$\bigcirc \quad \mathrm{D} \mathrm{Cl}_{\mathbf{2}} \mathbf{O}$

END OF QUESTIONS
\qquad
\qquad
\qquad

\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk .

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

[^0]: Give your answer to 3 significant figures.
 The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
 [4 marks]

