

A-level

Physics data and formulae

For use in exams from the June 2017 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

QUANTITY	SYMBOL	VALUE	UNITS
speed of light in vacuo	C	3.00×10^{8}	$m s^{-1}$
permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	e	1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	\boldsymbol{G}	6.67×10^{-11}	$N m^2 kg^{-2}$
the Avogadro constant	$N_{\mathbf{A}}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹

QUANTITY	SYMBOL	VALUE	UNITS
the Stefan constant	σ	5.67×10^{-8}	Wm ⁻² K ⁻⁴
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	m _e	9.11 × 10 ⁻³¹	kg
magnitude of electron charge/mass ratio	$\frac{e}{m_{e}}$	1.76×10^{11}	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	m _p	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_{p}}$	9.58×10^{7}	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	m n	$1.67(5) \times 10^{-27}$	kg

QUANTITY	SYMBOL	VALUE	UNITS
gravitational field strength	$oldsymbol{g}$	9.81	N kg ⁻¹
acceleration due to gravity	$oldsymbol{g}$	9.81	m s ⁻²
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ALGEBRAIC EQUATION

quadratic equation
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ASTRONOMICAL DATA

MASS/kg BODY **MEAN RADIUS/m**

 1.99×10^{30} 6.96×10^{8} Sun

Earth 5.97×10^{24} 6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length $= r\theta$

circumference of circle $=2\pi r$

area of circle $=\pi r^2$

curved surface area of cylinder $= 2\pi rh$

area of sphere

 $= 4\pi r^2$ $= \frac{4}{3}\pi r^3$ volume of sphere

PARTICLE PHYSICS

CLASS	NAME	SYMBOL	REST ENERGY/MeV
photon	photon	γ	0
lepton	neutrino	v _e	0
		v_{μ}	0
	electron	e [±]	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π0	134.972
	K meson	K [±]	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

PROPERTIES OF QUARKS

antiquarks have opposite signs

TYPE	CHARGE	BARYON NUMBER	STRANGENESS
u	$+\frac{2}{3}e$	+ 1/3	0
d	$-\frac{1}{3}e$	+ \frac{1}{3}	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

PROPERTIES OF LEPTONS

		Lepton number
Particles:	e ⁻ , ν _e ; μ ⁻ , ν _μ	+ 1
Antiparticles:	$e^+, \overline{v_e}, \mu^+, \overline{v_\mu}$	-1

PHOTONS AND ENERGY LEVELS

photon energy $E = hf = \frac{hc}{\lambda}$

photoelectricity $hf = \phi + E_{k \text{ (max)}}$

energy levels $hf = E_1 - E_2$

de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{mv}$

WAVES

wave speed
$$c = f\lambda$$
 period $f = \frac{1}{T}$

first harmonic
$$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$$

fringe spacing
$$w = \frac{\lambda D}{s}$$
 diffraction diffraction grating $d \sin \theta = n\lambda$

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle
$$\sin \theta_c = \frac{n_2}{n_1} \text{ for } n_1 > n_2$$

MECHANICS

moments

moment = Fd

velocity and acceleration

$$v = \frac{\Delta s}{\Delta t}$$

$$a = \frac{\Delta \mathbf{v}}{\Delta t}$$

equations of motion

$$v = u + at$$

$$s = \left(\frac{u+v}{2}\right) t$$

$$v^2 = u^2 + 2as$$

$$s = ut + \frac{at^2}{2}$$

force

$$F = m a$$

force

$$F = \frac{\Delta(mv)}{\Delta t}$$

impulse

$$F \Delta t = \Delta(mv)$$

work, energy and power

$$W = F s \cos \theta$$

$$E_{\mathbf{k}} = \frac{1}{2} \; m \; v^2$$

$$\Delta E_p = mg \Delta h$$

$$P = \frac{\Delta W}{\Delta t}$$
, $P = Fv$

$$efficiency = \frac{useful \ output \ power}{input \ power}$$

MATERIALS

density
$$\rho = \frac{m}{V}$$

Hooke's law $F = k \Delta L$

$$Young\ modulus = \frac{tensile\ stress}{tensile\ strain}$$

$$tensile stress = \frac{F}{A}$$
$$tensile strain = \frac{\Delta L}{L}$$

energy stored
$$E = \frac{1}{2} F \Delta L$$

ELECTRICITY

current and pd
$$I = \frac{\Delta Q}{\Delta t}$$
 $V = \frac{W}{Q}$ $R = \frac{V}{I}$

resistivity
$$\rho = \frac{RA}{L}$$

resistors in series
$$R_T = R_1 + R_2 + R_3 + \dots$$

resistors in parallel
$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

power
$$P = VI = I^2 R = \frac{V^2}{R}$$

emf
$$\mathcal{E} = \frac{E}{Q}$$
 $\varepsilon = I(R+r)$

CIRCULAR MOTION

magnitude of angular speed
$$\omega = \frac{v}{r}$$

$$\omega = 2\pi f$$

$$a = \frac{v^2}{r} = \omega^2 r$$

centripetal force
$$F = \frac{mv^2}{r} = m\omega^2 r$$

SIMPLE HARMONIC MOTION

acceleration $a = -\omega^2 x$

displacement $x = A \cos(\omega t)$

speed $v = \pm \omega \sqrt{(A^2 - x^2)}$

maximum speed $v_{\rm max} = \omega A$

maximum acceleration $a_{\text{max}} = \omega^2 A$

for a mass-spring system $T = 2\pi \sqrt{\frac{m}{k}}$

for a simple pendulum $T=2\pi\sqrt{\frac{l}{g}}$

THERMAL PHYSICS

energy to change

temperature

 $Q = mc\Delta\theta$

energy to change

state

Q = ml

gas law

pV = nRTpV = NkT

kinetic theory model $pV = \frac{1}{3}Nm (c_{\rm rms})^2$

kinetic energy of gas molecule

$$\frac{1}{2}m (c_{\rm rms})^2 = \frac{3}{2}kT = \frac{3RT}{2N_{\rm A}}$$

GRAVITATIONAL FIELDS

force between two	F =	$Gm_1 m_2$
masses		r^2

gravitational field
$$g = \frac{F}{m}$$

magnitude of gravitational field strength in a radial
$$g = \frac{GM}{r^2}$$
 field

work done
$$\Delta W = m \Delta V$$

gravitational potential
$$V = -\frac{GM}{r}$$

$$g = -\frac{\Delta V}{\Delta r}$$

ELECTRIC FIELDS AND CAPACITORS

force	between	two
point	charges	

$$F = \frac{1}{4 \pi \varepsilon_0} \frac{Q_1 Q_2}{r^2}$$

force on a charge

$$F = E Q$$

$$E = \frac{V}{d}$$

work done

$$\Delta W = Q \Delta V$$

$$E = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2}$$

$$V = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r}$$

$$E = \frac{\Delta V}{\Delta r}$$

$$C = \frac{Q}{V}$$

$$C = \frac{A\varepsilon_0 \varepsilon_r}{d}$$

$$E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

$$Q = Q_0 \left(1 - e^{-\frac{t}{RC}}\right)$$

$$Q = Q_0 e^{-\frac{t}{RC}}$$

MAGNETIC FIELDS

force on a current F = BIl

force on a moving charge F = BQv

magnetic flux $\Phi = BA$

magnetic flux $N\Phi = BAN\cos\theta$

magnitude of induced emf $\varepsilon = N \frac{\Delta \Phi}{\Delta t}$

emf induced in a rotating coil $\varepsilon = BAN\omega \sin \omega t$

alternating current $I_{
m rms} = rac{I_0}{\sqrt{2}}$ $V_{
m rms} = rac{V_0}{\sqrt{2}}$

transformer equations $\frac{N_s}{N_p} = \frac{V_s}{V_p}$

efficiency = $\frac{I_S V_S}{I_p V_p}$

 $N\Phi = BAN\cos\theta$

NUCLEAR PHYSICS

inverse square law for γ radiation

$$I = \frac{k}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$
, $N = N_0 e^{-\lambda t}$

$$A = \lambda N$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = R_0 A^{1/3}$$

energy-mass equation

$$E = mc^2$$

OPTIONS

ASTROPHYSICS

1 astronomical unit = 1.50×10^{11} m

1 light year = 9.46×10^{15} m

1 parsec = $2.06 \times 10^5 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

Hubble constant, $H = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at unaided eye}}$

telescope in normal adjustment

$$M = \frac{f_0}{f_e}$$

Rayleigh criterion

$$\theta \approx \frac{\lambda}{D}$$

magnitude equation

$$m-M = 5\log\frac{d}{10}$$

Wien's law

$$\lambda_{\text{max}} T = 2.9 \times 10^{-3} \text{ m K}$$

Stefan's law

$$P = \sigma A T^4$$

Schwarzschild radius
$$R_{\rm S} \approx \frac{2GM}{c^2}$$

Doppler shift for
$$v \ll c$$

Doppler shift for
$$v \ll c$$
 $\frac{\Delta f}{f} = -\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$

$$z=-rac{v}{c}$$

$$v = Hd$$

MEDICAL PHYSICS

$$P=\frac{1}{f}$$

$$m=\frac{v}{u}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

threshold of hearing

$$I_0 = 1.0 \times 10^{-12} \text{ W m}^{-2}$$

intensity level

intensity level =
$$10 \log \frac{I}{I_0}$$

absorption

$$I = I_0 e^{-\mu x}$$

$$\mu_{\rm m} = \frac{\mu}{\rho}$$

ultrasound imaging

$$Z = p c$$

$$\frac{I_{\rm r}}{I_{\rm i}} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

half-lives

$$\frac{1}{T_{\rm E}} = \frac{1}{T_{\rm B}} + \frac{1}{T_{\rm P}}$$

ENGINEERING PHYSICS

moment of inertia $I = \Sigma mr^2$

angular kinetic

energy

$$E_{\rm k} = \frac{1}{2} I\omega^2$$

equations of angular motion

$$\omega_2 = \omega_1 + \alpha t$$

$$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$

$$\theta = \omega_1 t + \frac{\alpha t^2}{2}$$

$$\theta = \frac{(\omega_1 + \omega_2) t}{2}$$

torque

$$T = I \alpha$$

$$T = Fr$$

angular

momentum

angular momentum = $I\omega$

angular impulse

$$T\Delta t = \Delta(I\omega)$$

work done

$$W = T\theta$$

power

$$P = T\omega$$

thermodynamics $Q = \Delta U + W$

$$Q = \Delta U + W$$

$$W = p\Delta V$$

adiabatic change pV^{γ} = constant

$$pV^{\gamma}$$
 = constant

isothermal

$$pV = constant$$

change

heat engines

efficiency =
$$\frac{W}{Q_{\rm H}} = \frac{Q_{\rm H} - Q_{\rm C}}{Q_{\rm H}}$$

maximum theoretical efficiency =
$$\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$

work done per cycle = area of loop

input power = calorific value × fuel flow rate

indicated power = (area of p - V loop)

× (number of cycles per second)

× (number of cylinders)

output or brake power $P = T\omega$

friction power = indicated power - brake power

heat pumps and refrigerators

refrigerator:
$$COP_{ref} = \frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C}$$

heat pump:
$$COP_{hp} = \frac{Q_H}{W} = \frac{Q_H}{Q_H - Q_C}$$

TURNING POINTS IN PHYSICS

electrons in fields
$$F = \frac{eV}{d}$$

$$F = Bev$$

$$r=\frac{mv}{Be}$$

$$\frac{1}{2}mv^2 = eV$$

Millikan's experiment

$$\frac{QV}{d} = mg$$

$$F = 6\pi\eta rv$$

Maxwell's formula
$$c = \frac{1}{\sqrt{\mu_0 \ \epsilon_0}}$$

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$$

special relativity

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$I = I_0 \qquad \sqrt{1 - \frac{v^2}{c^2}}$$

$$E = m c^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

ELECTRONICS

$$f_0 = \frac{1}{2\pi \sqrt{LC}}$$

$$Q = \frac{f_0}{f_R}$$

operational amplifiers: open loop

$$V_{\mathrm{out}} = A_{\mathrm{OL}} (V_{+} - V_{-})$$

inverting amplifier
$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{in}}}$$

non-inverting amplifier

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{\text{1}}}$$

summing amplifier
$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots \right)$$

difference amplifier
$$V_{\text{out}} = (V_+ - V_-) \frac{R_f}{R_1}$$

Bandwidth requirement:

for
$$AM$$
 bandwidth = $2 f_M$

for FM
$$bandwidth = 2(\Delta f + f_M)$$

END OF DATA SHEET

BLANK PAGE

BLANK PAGE

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright @ 2019 AQA and its licensors. All rights reserved.

IB/M/CD/Jun20/7408/INS/E2