AQA

Surname

Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature
I declare this is my own work.

A-level

PHYSICS
Paper 3
Section A
7408/3A

Friday 5 June 2020
Afternoon
Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- | A simple pendulum performs oscillations of period T in a vertical plane.

FIGURE 1, on the opposite page, shows views of the pendulum at the equilibrium position and at the instant of release. FIGURE 1 also shows a rectangular card marked with a vertical line.

| 0 | 1 | 1 |
| :--- | :--- | :--- | The card can be used as a fiducial mark to reduce uncertainty in the measurement of T.

Annotate FIGURE 1 to show a suitable position for the fiducial mark. Explain why you chose this position. [2 marks]
\qquad
\qquad
\qquad
\qquad

FIGURE 1

[Turn over]

| 0 | 1 | 2 |
| :--- | :--- | :--- | small-amplitude oscillations.

FIGURE 2 shows an arrangement used to determine the maximum amplitude that can be considered to be small, by investigating how T varies with amplitude.

FIGURE 2

horizontal floor

Describe a suitable procedure to determine A_{R}, the amplitude of the pendulum as it is released.

You may add detail to FIGURE 2, on the opposite page, to illustrate your answer. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 1.3 FIGURE 3, on the opposite page, shows some |
| :--- | :--- | of the results of the experiment.

Estimate, using FIGURE 3, the expected percentage increase in T when A_{R} increases from 0.35 m to 0.70 m .

Show your working. [3 marks]
percentage increase $=$ \%

FIGURE 3

[Turn over]

In another experiment the pendulum is released from a fixed amplitude.

The amplitudes A_{n} of successive oscillations are recorded, where $n=1,2,3,4,5 \ldots$.

TABLE 1 shows six sets of readings for the amplitude \boldsymbol{A}_{5}.

TABLE 1

A_{5} / m	0.217	0.247	0.225	0.223	0.218	0.224

| 0 | 1 | .4 | Determine the result that should be recorded |
| :--- | :--- | :--- | :--- | for \boldsymbol{A}_{5}.

Go on to calculate the percentage uncertainty in this result. [3 marks]
$A_{5}=$ m
percentage uncertainty = \%
[Turn over]

| 0 | 1 | 5 |
| :--- | :--- | :--- | corresponding value of $\ln \left(A_{\boldsymbol{n}} / \mathrm{m}\right)$ for certain values of n.

TABLE 2

n	A_{n} / m	$\ln \left(A_{n} / \mathrm{m}\right)$
2	0.238	-1.435
4	0.225	
7	0.212	-1.551
10	0.194	-1.640
13	0.183	-1.698

Complete TABLE 2. [1 mark]

| 0 | 1 | 6 |
| :--- | :--- | :--- | graph of $\ln \left(A_{n} / \mathbf{m}\right)$ against n. [2 marks]

FIGURE 4

$\ln \left(A_{n} / m\right)$

[Turn over]

BLANK PAGE

0	1.7	It can be shown that

$$
A_{n}=A_{0} \delta^{-n}
$$

where
A_{0} is the amplitude of release of the pendulum δ is a constant called the damping factor.

Explain how to find δ from your graph.
You are NOT required to determine $\boldsymbol{\delta}$.
[2 marks]
\qquad
\qquad
\qquad
[Turn over]
FIGURE 5 shows apparatus used to investigate the bending of a beam.
FIGURE 5 fixed part of
vernier scale
travelling microscope

A travelling microscope is positioned above the midpoint of the beam and
focused on the upper surface.
N
FIGURE 6 shows an enlarged view of both parts of the vernier scale.

0	2.1

The smallest division on the fixed part of the scale is $\mathbf{1} \mathbf{~ m m}$. What is the value of the vernier reading R_{0} in mm ?
Tick (\checkmark) ONE box [1 mark]

[Turn over]
FIGURE 7 shows the beam bending when a hanger of mass 0.050 kg is suspended from the midpoint.

\sim

0

Student B performs the experiment using a thinner beam but with the
same width and made from the same material as before.
Discuss ONE possible advantage and ONE possible disadvantage of
using the thinner beam. [3 marks]
Advantage
m 임
Disadvantage

| 0 | 2 | 4 |
| :--- | :--- | :--- | FIGURE 8 shows the best-fit line produced using the data collected by student A.

FIGURE 8

$\boldsymbol{s} / \mathrm{mm}$

It can be shown that $s=\frac{\eta m}{E}$
where E is the Young modulus of the material of the beam and η is a constant.

Deduce in \mathbf{s}^{-2} the order of magnitude of $\boldsymbol{\eta}$.
$E=1.14 \mathrm{GPa}$
[4 marks]

0	2	5
5		

A mass M is suspended from the midpoint of the beam. The vertical deflection s of the beam is measured for different values of L.

FIGURE 9, on the opposite page, shows a graph of the results for this experiment.

FIGURE 9 shows that $\log _{10}(s / m)$ varies linearly with $\log _{10}(L / m)$.

State what this shows about the mathematical relationship between s and L. You do NOT need to do a calculation. [1 mark]

FIGURE 9

[Turn over]

BLANK PAGE

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 | 6 |
| :--- | :--- | :--- |</table-markdown></div> of s when $L=80 \mathrm{~cm}$. [2 marks]

$$
s=
$$

m
[Turn over]

REPEAT OF FIGURE 8

0	2	7 Determine M using FIGURE 8. [1 mark]

[Turn over]

| 0 | 3 |
| :--- | :--- | partly-completed circuit used to investigate the emf \mathcal{E} and the internal resistance r of a power supply.

The resistance of P and the maximum resistance of Q are unknown.

0	3	1
1	Complete FIGURE 10 to show a circuit	

FIGURE 10

[Turn over]

BLANK PAGE

\section*{| 0 | 3 | 2 |
| :--- | :--- | :--- |
| Describe | | |}

- a procedure to obtain valid experimental data using your circuit
- how these data are processed to obtain ε and r by a graphical method.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

BLANK PAGE

[Turn over]

FIGURE 11 shows a different experiment carried out to confirm the results for ε and r.

FIGURE 11

Initially the power supply is connected in series with an ammeter and a 22Ω resistor. The current I in the circuit is measured.

The number n of 22Ω resistors in the circuit is increased as shown in FIGURE 11. The current I is measured after each resistor is added.

It can be shown that $\frac{22}{n}=\frac{\varepsilon}{I}-r$
FIGURE 12 shows a graph of the experimental data.

FIGURE 12

[Turn over]

BLANK PAGE

$\left.\begin{array}{|l|l|l}\hline 0 & 3 & 3\end{array}\right]$ Show that ε is about 1.6 V . [2 marks]
[Turn over]

013 . 4 FIGURE 13 shows the circuit when four resistors are connected.

FIGURE 13

Show, using FIGURE 12, that the current in the power supply is about 0.25 A . [1 mark]

| 0 | 3 | 5 Deduce, for the circuit shown in FIGURE 13, |
| :--- | :--- | :--- | - the potential difference (pd) across the power supply

- r.
[4 marks]

$$
\begin{array}{ll}
\mathrm{pd}= \\
r= & \mathrm{V} \\
\Omega
\end{array}
$$

[Turn over]

| 0 | 3 |
| :--- | :--- | .6 FIGURE 14 shows the plots for $n=1$ and $n=14$ FIGURE 14

THREE additional data sets for values of n between $n=1$ and $n=14$ are needed to complete the graph in FIGURE 14.

Suggest which additional values of \boldsymbol{n} should be used.

Justify your answer. [3 marks]
[Turn over]

REPEAT OF FIGURE 14

| 0 | 3 | 7 |
| :--- | :--- | :--- | resistors of resistance 27Ω.

The relationship between n and I is now
$\frac{27}{n}=\frac{\varepsilon}{I}-r$
Show on FIGURE 14 the effect on the plots for $n=1$ and $n=14$

You do not need to do a calculation. [2 marks]

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/CD/Jun20/7408/3A/E3

