AQA

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
A-level
PHYSICS
Paper 3
Section A
7408/3A
Friday 5 June 2020 Afternoon
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO
 DO SO

4

BLANK PAGE

5

SECTION A

Answer ALL questions in this section.

0	1

A simple pendulum performs oscillations of period T in a vertical plane.

FIGURE 1, on page 6, shows views of the pendulum at the equilibrium position and at the instant of release. FIGURE 1 also shows a rectangular card marked with a vertical line.
[Turn over]

FIGURE 1

card marked with a vertical line

\section*{| 0 | 1 | 1 |
| :--- | :--- | :--- |}

The card can be used as a fiducial mark to reduce uncertainty in the measurement of T.

Annotate FIGURE 1 to show a suitable position for the fiducial mark. Explain why you chose this position. [2 marks]
[Turn over]

\section*{| 0 | 1 | 2 |
| :--- | :--- | :--- |}

The period of the pendulum is constant for small-amplitude oscillations.

FIGURE 2 shows an arrangement used to determine the maximum amplitude that can be considered to be small, by investigating how T varies with amplitude.

FIGURE 2

Describe a suitable procedure to determine $A_{\mathbf{R}}$, the amplitude of the pendulum as it is released.

You may add detail to FIGURE 2, on the opposite page, to illustrate your answer. [2 marks]

[Turn over]

FIGURE 3, on the opposite page, shows some of the results of the experiment.

Estimate, using FIGURE 3, the expected percentage increase in T when $A_{\mathbf{R}}$ increases from 0.35 m to 0.70 m .

Show your working. [3 marks]
percentage increase $=$
$\%$

FIGURE 3

[Turn over]

12

In another experiment the pendulum is released from a fixed amplitude.

The amplitudes $A_{\boldsymbol{n}}$ of successive oscillations are recorded, where $n=1,2,3,4,5 \ldots$.

TABLE 1 shows six sets of readings for the amplitude \boldsymbol{A}_{5}.

TABLE 1

A_{5} / m	0.217	0.247	0.225	0.223	0.218	0.224

Determine the result that should be recorded for \boldsymbol{A}_{5}.

Go on to calculate the percentage uncertainty in this result. [3 marks]
$A_{5}=$ m percentage uncertainty =
[Turn over]

\section*{| 0 | 1 |
| :--- | :--- | :--- |}

TABLE 2 shows results for $\boldsymbol{A}_{\boldsymbol{n}}$ and the corresponding value of $\ln \left(\boldsymbol{A}_{\boldsymbol{n}} / \mathbf{m}\right)$ for certain values of \boldsymbol{n}.

TABLE 2

n	A_{n} / m	$\ln \left(A_{\boldsymbol{n}} / \mathrm{m}\right)$
2	0.238	-1.435
4	0.225	
7	0.212	-1.551
10	0.194	-1.640
13	0.183	-1.698

Complete TABLE 2. [1 mark]

0	1.6

Plot on FIGURE 4, on the opposite page, a graph of $\ln \left(A_{n} / \mathrm{m}\right)$ against \boldsymbol{n}. [2 marks]

15

FIGURE 4

[Turn over]

\section*{| 0 | 1 | 7 |
| :--- | :--- | :--- |}

It can be shown that
$A_{n}=A_{0} \delta^{-n}$
where
A_{0} is the amplitude of release of the pendulum
δ is a constant called the damping factor.

Explain how to find $\boldsymbol{\delta}$ from your graph. You are NOT required to determine δ. [2 marks]
\qquad
\qquad
\qquad
\qquad

17

[Turn over]

0	2
FIGUR	
of a b	
FIGUR	

FIGURE 5

The beam is placed horizontally on rigid supports.
The distance L between the supports is 80 cm .
A travelling microscope is positioned above the
midpoint of the beam and focused on the upper
surface.
[Turn over]
FIGURE 6 shows an enlarged view of both parts of the
vernier scale.
FIGURE 6
moving part
of vernier
scale

The smallest division on the fixed part of the scale is $\mathbf{1} \mathbf{~ m m}$.

∞
$\dot{+}$
$\stackrel{1}{2}$

[Turn over]
奉金

$0 \mid 2.2$
FIGURE
mass 0.0

FIGURE 7

23

BLANK PAGE
[Turn over]

24
The microscope is refocused on the upper surface and the
new vernier reading R is recorded. The vertical deflection s
of the beam is equal to $\left(R-R_{0}\right)$.
The total mass m suspended from the beam is increased in
steps of 0.050 kg . A value of s is recorded for each m up to a
value of $m=0.450 \mathrm{~kg}$.
Further values of s are then recorded as m is decreased in
0.050 kg steps until m is zero.
Student A performs the experiment and observes that value
of s during unloading are SOMETIMES different from the
corresponding values for loading.

25
State the type of error that causes the differences student A
observes. [1 mark]
[Turn over]

0 2, 3
Student B performs the experiment using a thinner beam
but with the same width and made from the same material
as before.
Discuss ONE possible advantage and ONE possible
disadvantage of using the thinner beam. [3 marks]
Advantage

Disadvantage
[Turn over]

0	2

FIGURE 8 shows the best-fit line produced using the data collected by student A.

FIGURE 8
$\boldsymbol{s} / \mathrm{mm}$

m / kg

29

It can be shown that $s=\frac{\eta m}{E}$
where E is the Young modulus of the material of the beam and η is a constant.

Deduce in $\mathbf{s}^{\mathbf{- 2}}$ the order of magnitude of $\boldsymbol{\eta}$.
$E=1.14 \mathrm{GPa}$
[4 marks]
order of magnitude of $\boldsymbol{\eta}=$
s^{-2}
[Turn over]

\section*{| 0 | 2 | 5 |
| :--- | :--- | :--- |}

Student C performs a different experiment using the same apparatus shown in FIGURE 5 on page 18.

A mass M is suspended from the midpoint of the beam. The vertical deflection s of the beam is measured for different values of L.

FIGURE 9, on page 32, shows a graph of the results for this experiment.

BLANK PAGE

[Turn over]

32

FIGURE 9 shows that $\log _{10}(s / m)$ varies

 linearly with $\log _{10}(L / m)$.State what this shows about the mathematical relationship between s and L. You do NOT need to do a calculation. [1 mark]

[Turn over]

BLANK PAGE

\section*{| 0 | 2 |
| :--- | :--- |}

Deduce, using FIGURE 9 on page 32, the value of s when $L=80 \mathrm{~cm}$. [2 marks]

```
s=
m
```


[Turn over]

REPEAT OF FIGURE 8

\section*{| 0 | 2. |
| :--- | :--- |} Determine M using FIGURE 8. [1 mark]

$$
M=\ldots \mathrm{kg}
$$

[Turn over]

\section*{| | 3 |
| :--- | :--- | :--- |}

FIGURE 10, on the opposite page shows a partly-completed circuit used to investigate the emf ε and the internal resistance r of a power supply.

The resistance of P and the maximum resistance of Q are unknown.

0	3

Complete FIGURE 10, on the opposite page, to show a circuit including a voltmeter and an ammeter that is suitable for the investigation. [1 mark]

FIGURE 10

[Turn over]

BLANK PAGE

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 3 | 2 |
| :--- | :--- | :--- |</table-markdown></div>

Describe

- a procedure to obtain valid experimental data using your circuit
- how these data are processed to obtain ε and r by a graphical method.
[4 marks]

[Turn over]

\qquad

43

BLANK PAGE

[Turn over]

shows a different
out to confirm the results for ε and r.
FIGURE 11, on the
experiment carried
45

Initially the power supply is connected in series with an
ammeter and a 22Ω resistor. The current I in the circuit
is measured.
The number n of 22Ω resistors in the circuit is increased as
shown in FIGURE 11 . The current I is measured after each
resistor is added.

> It can be shown that $\frac{22}{n}=\frac{\varepsilon}{I}-r$ FIGURE 12 , on the opposite page, shows a graph of the experimental data.
FIGURE 12

[Turn over]

48

BLANK PAGE
49

50

0	3	4

FIGURE 13 shows the circuit when four resistors are connected.

FIGURE 13

Show, using FIGURE 12, that the current in the power supply is about 0.25 A . [1 mark]

Deduce, for the circuit shown in FIGURE 13,

- the potential difference (pd) across the power supply
- r.
[4 marks]
pd $=$
$r=$
Ω
[Turn over]

52

0	3

FIGURE 14 shows the plots for $\boldsymbol{n}=1$ and $n=14$

FIGURE 14
$\frac{1}{n}$

$\frac{1}{\mathrm{I}}$

THREE additional data sets for values of n between $n=1$ and $n=14$ are needed to complete the graph in FIGURE 14.

Suggest which additional values of \boldsymbol{n} should be used.

Justify your answer. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

54

REPEAT OF FIGURE 14
$\frac{1}{n}$

$\frac{1}{\mathbf{I}}$

55

0	3	7

The experiment is repeated using a set of resistors of resistance 27Ω.

The relationship between n and I is now
$\frac{27}{n}=\frac{\varepsilon}{I}-r$
Show on FIGURE 14 the effect on the plots for $\boldsymbol{n}=1$ and $\boldsymbol{n}=14$

You do not need to do a calculation. [2 marks]

END OF QUESTIONS

56
\qquad

57

\qquad

58

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/CD/Jun20/7408/3A/E1

