AQA

Surname

\qquad
Other Names

Centre Number

Candidate Number \qquad
Candidate Signature \qquad
I declare this is my own work.

A-level

PHYSICS

Paper 3
Section B Astrophysics

7408/3BA

Friday 5 June 2020

Afternoon

Time allowed: The total time for both sections of this paper is $\mathbf{2}$ hours. You are advised to spend approximately 50 minutes on this section.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION B

Answer ALL questions in this section.

\section*{| 0 | 1.1 | Draw a ray diagram for a Cassegrain |
| :--- | :--- | :--- | telescope.}

Your diagram should show the paths of TWO rays up to the eyepiece lens.

The rays should initially be parallel to the principal axis. [2 marks]

principal

 axis| 0 | 1 | 2 |
| :--- | :--- | :--- |
| A spacecraft passes Pluto at a distance of | | | 12500 km . The telescope on board has an aperture of diameter 0.21 m and operates at a wavelength of 450 nm .

Discuss whether this telescope is suitable for studying a crater with a diameter of approximately 1 km on Pluto. [3 marks]

[Turn over]

| 0 | 1. | 3 |
| :--- | :--- | :--- | diameter 2.4 m .

Compare the collecting power of the Hubble telescope with the telescope on the spacecraft in Question 01.2. [2 marks]
\qquad
\qquad
\qquad
\qquad

0	1.4
An astrophysicist had to decide whether to	

Discuss which type of telescope to use. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 2 | TABLE 1 summarises some information about |
| :--- | :--- | :--- | four stars in the constellation Cassiopeia.

TABLE 1

Name	Colour	Apparent magnitude	Distance / ly
Caph	white	2.3	55
Ruchbah	blue/white	2.7	99
Schedar	orange	2.2	228
Tsih	blue	2.2	610

| 0 | 2 | 1 Which star has the highest surface |
| :--- | :--- | :--- | temperature?

Tick (\checkmark) ONE box. [1 mark]

Caph

Ruchbah

Schedar

Tsih

BLANK PAGE

[Turn over]

| 0 | 2 |
| :--- | :--- | .2 FIGURE 1 shows the intensity received at Earth from two of the stars, plotted against wavelength.

The effect of absorption by the Earth's atmosphere is not shown.

FIGURE 1
intensity
received
at Earth

Discuss what information can be found from FIGURE 1 about the temperature and colour of these stars.

Support your answer with suitable calculations. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

REPEAT OF TABLE 1

Name	Colour	Apparent magnitude	Distance / ly
Caph	white	2.3	55
Ruchbah	blue/white	2.7	99
Schedar	orange	2.2	228
Tsih	blue	2.2	610

| 0 | 2 | 3 |
| :--- | :--- | :--- | the absolute magnitude scale. [1 mark]

13

| 0 | 2 |
| :--- | :--- | :--- | Calculate the absolute magnitude of Schedar. [3 marks]

absolute magnitude $=$
[Turn over]

| 0 | 2 |
| :--- | :--- | :--- | Tsih has a mass over 15 times the mass of the Sun.

Tsih may eventually collapse to form a black hole.

Calculate the radius of the event horizon for a black hole with a mass 15 times that of the Sun. [2 marks]
\qquad m

BLANK PAGE

[Turn over]

| 0 | 3 | Type 1a supernovae can be used as standard |
| :--- | :--- | :--- | candles.

| 0 | 3 | 1 |
| :--- | :--- | :--- | State what is meant by a standard candle.

[1 mark]
$0 \mid 3$. 2 Sketch on FIGURE 2 the light curve for a type 1a supernova.

Annotate your graph with suitable scales and a unit for time. [3 marks]

FIGURE 2

absolute magnitude
[Turn over]

| 0 | 3 | 3 Measurements of type 1a supernovae are |
| :--- | :--- | :--- | used to find a value for the Hubble constant.

The distance from Earth is known for many type 1a supernovae.

Describe how these values of distance are used, with other data, to find the Hubble constant.

Your answer should include:

- the other data needed and how these data are used
- the graph plotted, including appropriate units for the axes
- how the Hubble constant is obtained and any limitations on the result.
[6 marks]
\qquad
\qquad
\qquad

19
[Turn over]

20

21
[Turn over]

0	4	Table 2
2	gives data about the supergiant star	

TABLE 2

Name	Radius $/ \mathrm{m}$	Surface temperature $/ \mathrm{K}$
MeInick 34	1.4×10^{10}	53000
Sun	7.0×10^{8}	5700

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">4</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 4 | 1 |
| :--- | :--- | :--- |</table-markdown></div>
 [2 marks]

Answer = \qquad

| 0 | 4.2 | Discuss why the evolution of a supergiant |
| :--- | :--- | :--- | star in the local part of our galaxy could be dangerous for life on Earth. [2 marks]

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

26

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved

