

AS

COMPUTER SCIENCE

7516/1

Paper 1

Mark scheme

June 2020

Version: 1.0 Final

206A7516/1/MS

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own

internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third

party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

3

The following annotation is used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A. - means acceptable creditworthy answer
R. - means reject answer as not creditworthy
NE. - means not enough
I. - means ignore
DPT. - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

4

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as

instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives

eg

In question 14.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 3 marks

AO3 (programming) – 6 marks
Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive

will be restricted accordingly.

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

5

Section A

Qu Marks

01 2 marks for AO1 (knowledge)

Problem definition;
Requirements specification // list of objectives;
Feedback about requirements specification from end user;
Data model / ER diagram;
Analysis data dictionary;
Interviews;
Questionnaires;
Observations;
Examination of documents;
Research existing solutions;
Acceptable limitations / constraints;

Max 2

2

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

6

02 1 3 marks for AO2 (apply)

X Result Output

0 0 -

4 4

6 10

3 13

2 15

-1 14 14

1 mark for correct X column (4, 6, 3, 2, -1);

1 mark for correct Result column (4, 10, 13, 15);

1 mark for final Result value (14) and Output column (14);

Max 2 if any errors

3

02 2 2 marks for AO2 (analyse)

The result is wrong // The sentinel value should not have been used in the calculation;
Subtract the last value // input first value before the WHILE loop and swap the

instructions within the WHILE loop // add 1 to result after loop is finished;

A. not add the value if it is the sentinel value

2

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

7

03 1 9 marks for AO3 (programming)

Mark as follows:

1) Correct variable declarations for X, Product, Factor,

Note to examiners
If a language allows variables to be used without explicit declaration (eg
Python) then this mark should be awarded if the correct variables exist in the
program code and the first value they are assigned is of the correct data type.

2) Correct prompt "Enter an integer greater than 1: "

and X assigned integer value entered by user;

3) Correct initialisation of Product and Factor before WHILE loop;
4) WHILE loop with syntax allowed by the programming language and correct

condition for termination of the loop;
5) Correct incrementation of Factor and correct assignment to Product within

WHILE loop;

6) IF statement with correct condition and ELSE part after the WHILE loop;

7) Correct re-initialisation of Product within THEN part;

8) FOR loop with syntax allowed by the programming language over correct range

within THEN part;

9) Correct assignment to Product and output of N within FOR loop;

I. minor differences in case and spelling

DPT. use of incorrect variable name

Max 8 if code does not function correctly

9

03 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 03.1, including prompts on screen capture matching those in
code.
Code for 03.1 must be sensible.

Screen capture showing:
'720' being entered and 1 2 3 4 5 6 displayed
(Accept on same or separate lines)
'600' being entered and the message 'No result' displayed

Enter an integer greater than 1: 720

1

2

3

4

5

6

>>>

Enter an integer greater than 1: 600

No result

1

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

8

>>>

03 3 Mark is for AO2 (analyse)

X is equal to the product of a sequence of (consecutive) whole numbers starting at 1

// X is a factorial number (greater than 1)

// X is the factorial of a positive integer (greater than 1);

1

Section B

Qu Marks

04 1 Mark is for AO1 (understand)

FileFound / FileTypeOK / ProgramEnd;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

04 2 Mark is for AO1 (understand)

ConvertChar //

GetMenuOption (Python only);

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

04 3 Mark is for AO1 (understand)

EditImage;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

05 1 Mark is for AO1 (understand)

Header / FileHeader;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

9

05 2 Mark is for AO1 (understand)

Grid / Fields;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

06 1 Mark is for AO1 (understand)

It is easier to read / understand / more descriptive (the identifier) than "";
It will never change // a change in value would invalidate the name EMPTY_STRING,
R. the value never changes in this program;
If there was a requirement to change the representation of the empty string it would only
need to be changed in one place;
The value cannot be accidentally changed elsewhere in the code (Do NOT accept for
Python);

A. since the name is uppercase this tells the programmer not to alter it. (Python only)

Max 1

1

06 2 Mark is for AO1 (understand)

(These are the maximum dimensions and) may be changed easily if the program
requirements change // a change would only need to be made in one place;
It is easier to read/understand than the actual values;
The value cannot be accidentally changed elsewhere in the code (Do NOT accept for
Python);

A. since the name is uppercase this tells the programmer not to alter it. (Python only)
R. if answer is the same as 06.1

Max 1

1

07 2 marks for AO2 (analyse)

NextPixel is not (a string that can be converted to) an integer;

File no longer available; R. file could not be opened as already open
Pixel data stored in wrong format, R. file does not have .txt extension;
Not enough lines in the file N.E. Empty file;
Not enough characters in a line;
A. Not enough data in file for given size of image; if neither of the 2 points above have
been given
Header height larger than MAX_HEIGHT, A. larger than 100;

Header width larger than MAX_WIDTH, A. larger than 100;

Max 2

2

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

10

08 1 Mark is for AO1 (understanding)

To represent the structure of the program // which subroutine is called from which
subroutine;
To aid decomposition of a problem;
To aid with stepwise refinement;

Max 1

1

08 2 Mark is for AO1 (understanding)

A subroutine/procedure/function/method; A. module

1

08 3 Mark is for AO2 (analyse)

ConvertChar;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

09 1 Mark is for AO2 (analyse)

The default values of the file header;
Empty string, MAX_WIDTH, MAX_HEIGHT, empty string;

A. '''' / '' / EMPTY_STRING for empty string

A. 100 for MAX_WIDTH and/or MAX_HEIGHT

Max 1

1

09 2 3 marks for AO2 (analyse)

The string is split into separate parts;
Delimited by a comma;
Each part is assigned to a field of the header record;
A. File type is used to determine which subroutine is called;

Max 3

3

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

11

10 2 marks for AO2 (analyse)

Each range of greyscale values is assigned a different ASCII character;
A. Omission of range if an example range is given

The lighter greyscales have less dense/smaller coverage
// the darker greyscales have denser/larger coverage
// the characters used give an effect appropriate for the greyscale value;

2

11 1 2 marks for AO2 (analyse)

When the image is displayed/loaded it will not be the intended image
// the pixels will be misaligned;
As the line breaks will now be in the wrong places // image width is shorter but length is
longer;
A. there will be no error message / exception;

Max 2

2

11 2 2 marks for AO2 (analyse)

The image is now a larger dimension;
There will not be enough data in the file;
The bottom rows of the image will consist of dots;
The code will cause an exception // "Error: Image data error" will be

displayed;

Max 2

2

11 3 2 marks for AO2 (analyse)

The lower part of the picture will not be displayed/loaded // only the upper part of the
picture well be displayed/loaded;
Only the top 10 rows are displayed/loaded // the bottom 49 rows are not
displayed/loaded // only the cat’s head is displayed/loaded // the cat’s body has been
removed;

Max 2

2

12 3 marks for AO2 (analyse)

1) Each line/row of output across would consist of column pixels // Each column of

output would consist of row pixels;

2) The bottom left corner of the image would now be top right

// top right corner of the image would now be bottom left;

3) This would in effect be a flip/inversion;

4) across the diagonal;

5) … top left to bottom right // leading (diagonal);

Max 2 if overall effect is not clear.
Max 3

3

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

12

Section C

Qu Marks

13 1 1 mark for AO3 (design) and 5 marks for AO3 (programming)

Mark as follows:

AO3 (design) – 1 mark:

1) Declare a new grid to receive mirror image;

AO3 (programming) – 5 marks:

2) Create subroutine header with required parameters, I. extra parameters;

3) Column reference adjusted for mirror image;

4) Nested loops with correct ranges;

5) Add menu option in DisplayMenu;

6) Add call to MirrorImage in suitable place with parameters that match subroutine

definition in code, A. call to MirrorImage in suitable place with grid and

header parameters if subroutine definition not provided;

Max 5 if code does not function correctly.

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

13

13 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 13.1, including prompts on screen capture matching those in
code.
Code for 13.1 must be sensible.

Screen capture showing:

Main Menu

=========

L - Load graphics file

D - Display image

E - Edit image

S - Save image

M - Mirror image

X - Exit program

Enter your choice: M

Cat

===

 ,/((,

 /,(// ,,,. .#(/(

 ./(((//////.,//(/#,*(

 #///////////////(*(/

 ,,//////////////////

 #///////##//////////(

 ,.////(#////((#///(

 ,. #///////////////////#

 ./ .,*//#/(//(,,#/(///*

 /,* .((*///#///(#///%(///#/#

 // (///*,,,////////////////(

 (/# /,,,/////,,/////////##.

 (/(///,.,.,*////////////////(

 ,.,* (,/////////*,//////////////(

 .///. ,.,,..,//////////////////////#

 ,,,(#///*****////////////////////(

 (//*, (////////////,..,,(///////////

 (,,*(#///////*..,,,,,,,,#(.,,,,(//(

 ,//*,, (///////////////////(,.,,,(//#

 (,.,/#. .#////////*,,,,,,,,.##////(//

 ////,.*//*,,////////////////**/#.,,,(#/

 ,#.,////,,/////////*,,,,,*/(/#////#,*

 #////////////#////,,,*#//#

 /#////////#//(((/////#/(

1

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

14

14 1 3 marks for AO3 (design) and 6 marks for AO3 (programming)

Level Description Mark
Range

3 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution.
All of the appropriate design decisions have been taken.
The hidden message may not have been built entirely
correctly.

7–9

2 There is evidence that a line of reasoning has been
partially followed. There is evidence of some
appropriate design work. The subroutine
LoadGreyScaleImage has been amended with a

call to FindSecretChar in an appropriate place.

4–6

1 An attempt has been made to write the subroutine
FindSecretChar. Some appropriate programming

statements have been written. There is little evidence to
suggest that a line of reasoning has been followed or
that the solution has been designed. The statements
written may or may not be syntactically correct and the
subroutines will have very little or none of the extra
required functionality. It is unlikely that any of the key
design elements of the task have been recognised.

1–3

Marking guidance:

Evidence of AO3 design – 3 marks:

Evidence of design to look for in response:

1) check whether value of pixel is in the correct range

2) convert a range of integers to a range of letters

3) call FindSecretChar with PixelValue and Key as parameters.

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming – 6 marks:

Evidence of programming to look for in response:

4) correct subroutine header and parameters for FindSecretChar, I. return type

5) generate underscore if no decrypted character found // generate space if

PixelValue – Key is zero

6) always returns the correct character

7) extract the key from the file header

8) concatenate hidden message and returned character within FOR loop

9) output the hidden message after FOR loop.

Max 8 if code does not function correctly.

9

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

15

14 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 14.1, including prompts on screen capture matching those in
code.
Code for 14.1 must be sensible.

Screen capture showing:

Enter your choice: L

Enter filename to load: greyscale

H__E___L___P ME

TestImage2

==========

##&#.

&:#+&

 ####

A. hyphen instead of underscore character

1

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

16

15 1 3 marks for AO3 (design) and 9 marks for AO3 (programming)

Level Description Mark
Range

3 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution.
All of the appropriate design decisions have been taken.
The last value pair may not have been saved.

9–12

2 There is evidence that a line of reasoning has been
partially followed. There is evidence of some appropriate
design work. Consecutive pixels are counted and most
value pairs saved to a new file, delimiter may be missing.

5–8

1 An attempt has been made to write the subroutine
CompressFile. Some appropriate programming

statements have been written. There is little evidence to
suggest that a line of reasoning has been followed or that
the solution has been designed. The statements written
may or may not be syntactically correct and the
subroutines will have very little or none of the extra
required functionality. It is unlikely that any of the key
design elements of the task have been recognised.
Some appropriate programming statements from the
LoadFile subroutine may have been used for reading a

file.

1–4

Marking guidance:

Evidence of AO3 design – 3 points:

Evidence of design to look for in response:

1) Attempts to create new file with modified file name

2) Structure that compares current character with previous character

3) Under some circumstances counts consecutive symbols correctly

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming – 9 points:

Evidence of programming to look for in response:

4) Ask user for file name

5) Open existing file for reading and new file for writing

6) Edit file header correctly

7) Initialise symbol count for first run of symbols

8) Check each pixel in the file

9) Save first symbol count and symbol to file

10) Save each symbol count and symbol to file (except first and last pairs)

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

17

11) Save last symbol count and symbol to file

12) Reset symbol count for next run of symbols

Max 11 if code does not function correctly.

15 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 15.1, including prompts on screen capture matching those in
code.
Code for 15.1 must be sensible.

Screen capture showing:

Enter your choice: C

Which graphics file do you want to compress? image2

1

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

18

VB.Net

03 1 Dim X As Integer '

Dim Product As Integer '

Dim Factor As Integer '1

Console.Write("Enter an integer greater than 1: ") '

X = Console.ReadLine '2

Product = 1 '

Factor = 0 '3

While Product < X '4

 Factor += 1 '

 Product *= Factor '5

End While

If X = Product Then '6

 Product = 1 '7

 For N = 1 To Factor '8

 Product = Product * N '

 Console.WriteLine(N) '9

 Next

Else

 Console.WriteLine("No result")

End If

9

13 1 Sub MirrorImage(ByVal Grid(,) As String, ByVal Header As

FileHeader) '2

 Dim NewGrid(Header.Height - 1, Header.Width - 1) As String '1

 For Row = 0 To Header.Height – 1 '

 For Column = 0 To Header.Width – 1 '4

 NewGrid(Row, Column) = Grid(Row, Header.Width - 1 -

Column) '3

 Next

 Next

 DisplayImage(NewGrid, Header)

End Sub

Sub DisplayMenu()

 Console.WriteLine()

 Console.WriteLine("Main Menu")

 Console.WriteLine("=========")

 Console.WriteLine("L - Load graphics file")

 Console.WriteLine("D - Display image")

 Console.WriteLine("E - Edit image")

 Console.WriteLine("S - Save image")

 Console.WriteLine("X - Exit program")

 Console.WriteLine("M - Mirror image") '5

End Sub

Sub Graphics()

 Dim MenuOption As Char

 Dim Grid(MAX_WIDTH - 1, MAX_HEIGHT - 1) As String

 ClearGrid(Grid)

 Dim Header As FileHeader

 SetHeader(Header)

 Dim ProgramEnd As Boolean = False

 While Not ProgramEnd

 DisplayMenu()

 MenuOption = GetMenuOption()

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

19

 If MenuOption = "L" Then

 LoadFile(Grid, Header)

 ElseIf MenuOption = "D" Then

 DisplayImage(Grid, Header)

 ElseIf MenuOption = "E" Then

 Grid = EditImage(Grid, Header)

 ElseIf MenuOption = "S" Then

 SaveImage(Grid, Header)

 ElseIf MenuOption = "X" Then

 ProgramEnd = True

 ElseIf MenuOption = "M" Then

 MirrorImage(Grid, Header) '6

 Else

 Console.WriteLine("You did not choose a valid menu option.

Try again")

 End If

 End While

 Console.WriteLine("You have chosen to exit the program")

 Console.Write("Do you want to save the image as a graphics

file? (Y/N) ")

 Dim Answer As String = Console.ReadLine()

 If Answer = "Y" Or Answer = "y" Then

 SaveFile(Grid, Header)

 End If

End Sub

Alternative answer for MirrorImage subroutine

Sub MirrorImage(ByVal Grid(,) As String, ByVal Header As

FileHeader) '2

 For Row = 0 To Header.Height – 1 '

 For Column = 0 To Header.Width – 1 '4

 Console.Write(Grid(Row, Header.Width - 1 - Column)) ' 3

 Next

 Console.WriteLine()

 Next

End Sub

14 1 Function FindSecretChar(ByVal PixelValue As Integer, ByVal Key

As Integer) As Char '4

 Dim NewValue As Integer = PixelValue - Key

 If NewValue = 0 Then

 Return " " '6

 ElseIf NewValue >= 1 And NewValue <= 26 Then '1

 Return Chr(NewValue + Asc("A") – 1) '2

 Else

 Return "_" '5

 End If

End Function

Sub LoadGreyScaleImage(ByVal FileIn As StreamReader, ByVal

Grid(,) As String, ByVal Header As FileHeader)

9

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

20

 Try

 Dim NextPixel As String

 Dim PixelValue As Integer

 Dim HiddenMessage As String = ""

 Dim Key As Integer =

CInt(Header.Title.Substring(Header.Title.Length - 1, 1)) '7

 For Row = 0 To Header.Height - 1

 For Column = 0 To Header.Width - 1

 NextPixel = FileIn.ReadLine()

 PixelValue = CInt(NextPixel)

 HiddenMessage += FindSecretChar(PixelValue, Key) '3, 8

 Grid(Row, Column) = ConvertChar(PixelValue)

 Next

 Next

 Console.WriteLine(HiddenMessage) '9

 Catch

 DisplayError("Image data error")

 End Try

End Sub

15 1 Sub CompressFile()

 Console.Write("Enter the filename containing the data to

compress: ")

 Dim FileName As String = Console.ReadLine '4

 Dim FileIn As StreamReader = New StreamReader(FileName) '5

 Dim HeaderLine As String = FileIn.ReadLine()

 Dim Fields() As String = HeaderLine.Split(",")

 Dim Header As FileHeader

 Header.Title = Fields(0)

 Header.Width = CInt(Fields(1))

 Header.Height = CInt(Fields(2))

 Header.FileType = "C" '6

 Dim FileData As String = FileIn.ReadLine()

 FileIn.Close()

 Dim FileOut As StreamWriter = New StreamWriter("CMP" &

FileName) '1, 5

 FileOut.WriteLine(Header.Title + "," + CStr(Header.Width) +

"," + CStr(Header.Height) + "," + Header.FileType) '2

 Dim Count As Integer = 1 '7

 Dim LastChar As Char = FileData(0)

 For Pos = 1 To FileData.Length – 1 '8

 If FileData(Pos) = LastChar Then '2

 Count += 1 '3

 Else

 FileOut.WriteLine(CStr(Count) + "," + LastChar) '9, 10

 Count = 1 '12

 LastChar = FileData(Pos)

 End If

 Next

 FileOut.WriteLine(CStr(Count) + "," + LastChar) '11

 FileOut.Close()

End Sub

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

21

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

22

Python 3

03 1 # X, Product, Factor are integers # 1

print("Enter an integer greater than 1: ") #

X = int(input()) # 2

Product = 1 #

Factor = 0 # 3

while Product < X: # 4

 Factor += 1 #

 Product = Product * Factor # 5

if X == Product: # 6

 Product = 1 # 7

 for N in range(1, Factor + 1): # 8

 Product = Product * N #

 print(N) # 9

else:

 print("No result")

9

13 1 def MirrorImage(Grid, Header): # 2

 NewGrid = [[EMPTY_STRING for Column in range(MAX_WIDTH)] for Row

in range(MAX_HEIGHT)]

 NewGrid = ClearGrid(NewGrid) # 1

 for ThisRow in range(Header.Height): #

 for NewColumn in range(Header.Width): # 4

 NewGrid[ThisRow][NewColumn] = Grid[ThisRow][Header.Width -

NewColumn - 1] # 3

 DisplayImage(NewGrid, Header)

def DisplayMenu():

 print()

 print("Main Menu")

 print("=========")

 print("L - Load graphics file")

 print("D - Display image")

 print("E - Edit image")

 print("S - Save image")

 print("M - Mirror image") # 5

 print("X - Exit program")

 print()

def Graphics():

 Grid = [['' for Column in range(MAX_WIDTH)] for Row in

range(MAX_HEIGHT)]

 Grid = ClearGrid(Grid)

 Header = FileHeader()

 ProgramEnd = False

 while not ProgramEnd:

 DisplayMenu()

 MenuOption = GetMenuOption()

 if MenuOption == 'L':

 Grid, Header = LoadFile(Grid, Header)

 elif MenuOption == 'D':

 DisplayImage(Grid, Header)

 elif MenuOption == 'E':

 Grid = EditImage(Grid, Header)

 elif MenuOption == 'S':

 SaveImage(Grid, Header)

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

23

 elif MenuOption == 'M':

 Grid = MirrorImage(Grid, Header) # 6

 elif MenuOption == 'X':

 ProgramEnd = True

 else:

 print("You did not choose a valid menu option. Try again")

 print("You have chosen to exit the program")

 Answer = input("Do you want to save the image as a graphics file?

(Y/N) ")

 if Answer == "Y" or Answer == "y":

 SaveFile(Grid, Header)

14 1 def FindSecretChar(PixelValue, Key): # 4

 Character = '_' # 5

 NewValue = PixelValue - Key

 if NewValue == 0:

 Character = ' ' # 6

 elif NewValue in range(1, 27): # 1

 Character = chr(ord('A') + NewValue - 1) # 2

 return Character

def LoadGreyScaleImage(FileIn, Grid, Header):

 try:

 Key = int(Header.Title[-1]) # 7

 HiddenMessage = EMPTY_STRING

 for Row in range(Header.Height):

 for Column in range(Header.Width):

 NextPixel = FileIn.readline()

 PixelValue = int(NextPixel)

 HiddenMessage = HiddenMessage + FindSecretChar(PixelValue,

Key) # 3, 8

 Grid[Row][Column] = ConvertChar(PixelValue)

 print(HiddenMessage) # 9

 except:

 DisplayError("Image data error")

 return Grid

9

15 1 def CompressFile():

 FileFound = False

 Header = FileHeader()

 FileName = input("Which graphics file do you want to compress? ")

4

 try:

 FileIn = open(FileName + ".txt", 'r')

 FileFound = True

 FileOut = open("CMP" + FileName + ".txt", 'w') # 1, 5

 HeaderLine = FileIn.readline()

 HeaderLine = HeaderLine[0:-2] + "C" # 6

 FileOut.write(HeaderLine + "\n") # 2

 ImageData = FileIn.readline()

 PrevPixelChar = ImageData[0]

 PixelCount = 0 # 7

 for NextPixelChar in ImageData: # 8

 if NextPixelChar == PrevPixelChar: # 2

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

24

 PixelCount += 1 # 3

 else:

 FileOut.write(str(PixelCount) + "," + PrevPixelChar + "\n")

9, 10

 PrevPixelChar = NextPixelChar

 PixelCount = 1 # 12

 FileOut.write(str(PixelCount) + "," + PrevPixelChar + "\n") #

11

 FileOut.close()

 FileIn.close()

 except:

 if not FileFound:

 DisplayError("File not found")

 else:

 DisplayError("Error during compression")

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

25

Python 2

03 1 # X, Product, Factor are integers # 1

print "Enter an integer greater than 1: " #

X = int(raw_input()) # 2

Product = 1 #

Factor = 0 # 3

while Product < X: # 4

 Factor += 1 #

 Product = Product * Factor # 5

if X == Product: # 6

 Product = 1 # 7

 for N in range(1, Factor + 1): # 8

 Product = Product * N #

 print N # 9

else:

 print "No result"

9

13 1 def MirrorImage(Grid, Header): # 2

 NewGrid = [[EMPTY_STRING for Column in range(MAX_WIDTH)] for Row

in range(MAX_HEIGHT)]

 NewGrid = ClearGrid(NewGrid) # 1

 for ThisRow in range(Header.Height):

 for NewColumn in range(Header.Width): # 4

 NewGrid[ThisRow][NewColumn] = Grid[ThisRow][Header.Width -

NewColumn - 1] # 3

 DisplayImage(NewGrid, Header)

def DisplayMenu():

 print

 print "Main Menu"

 print "========="

 print "L - Load graphics file"

 print "D - Display image"

 print "E - Edit image"

 print "S - Save image"

 print "M - Mirror image" # 5

 print "X - Exit program"

 print

def Graphics():

 Grid = [['' for Column in range(MAX_WIDTH)] for Row in

range(MAX_HEIGHT)]

 Grid = ClearGrid(Grid)

 Header = FileHeader()

 ProgramEnd = False

 while not ProgramEnd:

 DisplayMenu()

 MenuOption = GetMenuOption()

 if MenuOption == 'L':

 Grid, Header = LoadFile(Grid, Header)

 elif MenuOption == 'D':

 DisplayImage(Grid, Header)

 elif MenuOption == 'E':

 Grid = EditImage(Grid, Header)

 elif MenuOption == 'S':

 SaveImage(Grid, Header)

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

26

 elif MenuOption == 'M':

 Grid = MirrorImage(Grid, Header) # 6

 elif MenuOption == 'X':

 ProgramEnd = True

 else:

 print "You did not choose a valid menu option. Try again"

 print "You have chosen to exit the program"

 Answer = raw_input("Do you want to save the image as a graphics

file? (Y/N) ")

 if Answer == "Y" or Answer == "y":

 SaveFile(Grid, Header)

14 1 def FindSecretChar(PixelValue, Key): # 4

 Character = '_' # 5

 NewValue = PixelValue - Key

 if NewValue == 0:

 Character = ' ' # 6

 elif NewValue in range(1, 27): # 1

 Character = chr(ord('A') + NewValue - 1) # 2

 return Character

def LoadGreyScaleImage(FileIn, Grid, Header):

 try:

 Key = int(Header.Title[-1]) # 7

 HiddenMessage = EMPTY_STRING

 for Row in range(Header.Height):

 for Column in range(Header.Width):

 NextPixel = FileIn.readline()

 PixelValue = int(NextPixel)

 HiddenMessage = HiddenMessage + FindSecretChar(PixelValue,

Key) # 3, 8

 Grid[Row][Column] = ConvertChar(PixelValue)

 print HiddenMessage # 9

 except:

 DisplayError("Image data error")

 return Grid

9

15 1 def CompressFile():

 FileFound = False

 Header = FileHeader()

 FileName = raw_input("Which graphics file do you want to

compress? ") # 4

 try:

 FileIn = open(FileName + ".txt", 'r')

 FileFound = True

 FileOut = open("CMP" + FileName + ".txt", 'w') # 1, 5

 HeaderLine = FileIn.readline()

 HeaderLine = HeaderLine[0:-2] + "C" # 6

 FileOut.write(HeaderLine + "\n") # 2

 ImageData = FileIn.readline()

 PrevPixelChar = ImageData[0]

 PixelCount = 0 # 7

 for NextPixelChar in ImageData: # 8

 if NextPixelChar == PrevPixelChar: # 2

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

27

 PixelCount += 1 # 3

 else:

 FileOut.write(str(PixelCount) + "," + PrevPixelChar + "\n")

9, 10

 PrevPixelChar = NextPixelChar

 PixelCount = 1 # 12

 FileOut.write(str(PixelCount) + "," + PrevPixelChar + "\n") #

11

 FileOut.close()

 FileIn.close()

 except:

 if not FileFound:

 DisplayError("File not found")

 else:

 DisplayError("Error during compression")

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

28

Pascal

03 1 program question3;

{$APPtype CONSOLE}

uses SysUtils;

var

 X, Product, Factor, N: integer; // 1

begin

 write('Enter an integer greater than 1: '); //

 readln(X); // 2

 Product := 1; //

 Factor := 0; // 3

 while Product < X do // 4

 begin

 Factor := Factor + 1; //

 Product := Product * Factor; // 5

 end;

 if X = Product // 6

 then

 begin

 Product := 1; // 7

 for N := 1 to Factor do // 8

 begin

 Product := Product * N; //

 writeln(N); // 9

 end;

 end

 else

 writeln('No result');

 readln;

end.

9

13 1 procedure MirrorImage(var Grid: TGrid; Header: FileHeader);

// 2

var

 NewGrid: TGrid;

 ThisRow, NewColumn: integer;

begin

 ClearGrid(NewGrid); // 1

 for ThisRow := 0 to Header.Height - 1 do

 for NewColumn := 0 to Header.Width - 1 do // 4

 NewGrid[ThisRow, NewColumn] := Grid[ThisRow,

Header.Width - NewColumn - 1]; // 3

 DisplayImage(NewGrid, Header) ;

 Grid := NewGrid;

end;

procedure DisplayMenu();

begin

 writeln;

 writeln('Main Menu');

 writeln('=========');

 writeln('L - Load graphics file');

 writeln('D - Display image');

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

29

 writeln('E - Edit image');

 writeln('S - Save image');

 writeln('M - Mirror image'); // 5

 writeln('X - Exit program');

 writeln;

end;

procedure Graphics();

var

 Grid: TGrid;

 Header: FileHeader;

 ProgramEnd: boolean;

 MenuOption: char;

 Answer: char;

begin

 ClearGrid(Grid);

 SetHeader(Header);

 ProgramEnd := false;

 while not ProgramEnd do

 begin

 DisplayMenu();

 MenuOption := GetMenuOption();

 case MenuOption of

 'L': LoadFile(Grid, Header);

 'D': DisplayImage(Grid, Header);

 'E': EditImage(Grid, Header);

 'S': SaveImage(Grid, Header);

 'M': MirrorImage(Grid, Header); // 6

 'X': ProgramEnd := true;

 else

 writeln('You did not choose a valid menu option. Try

again');

 end;

 end;

 writeln('You have chosen to exit the program');

 write('Do you want to save the image as a graphics file?

(Y/N) ');

 readln(Answer);

 if (Answer = 'Y') or (Answer = 'y')

 then

 SaveFile(Grid, Header);

 readln;

end;

14 1 function FindSecretChar(PixelValue, Key: integer): char; // 4

var

 Character: char;

 NewValue: integer;

begin

 Character := '_'; // 5

 NewValue:= PixelValue - Key;

 if NewValue = 0

 then

9

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

30

 Character := ' ' // 6

 else

 if (NewValue >= 1) And (NewValue <= 26) // 1

 then

 Character := chr(ord('A') + NewValue - 1); // 2

 FindSecretChar := Character;

end;

procedure LoadGreyScaleImage(var FileIn: text; var Grid:

TGrid; var Header: FileHeader);

var

 Row, Column: integer;

 NextPixel, HiddenMessage: string;

 PixelValue, Key: integer;

Begin

 try

 Key := strToInt(rightStr(Header.Title, 1)); // 7

 HiddenMessage := EMPTY_STRING;

 for Row := 0 to Header.Height - 1 do

 for Column := 0 to Header.Width - 1 do

 begin

 readln(FileIn, NextPixel);

 PixelValue := strToInt(NextPixel);

 HiddenMessage := HiddenMessage +

FindSecretChar(PixelValue, Key); // 3, 8

 Grid[Row, Column] := ConvertChar(PixelValue);

 end;

 writeln(HiddenMessage); // 9

 except

 DisplayError('Image data error');

 end;

end;

15 1 procedure CompressFile();

var

 FileFound: boolean;

 Header: FileHeader;

 FileIn, FileOut: text;

 FileName, HeaderLine: string;

 Fields: array[0 .. 4] of string;

 i, PixelCount: integer;

 PrevPixelChar, NextPixelChar: char;

begin

 FileFound := false;

 write('Which graphics file do you want to compress? ');

 readln(FileName); // 4

 try

 assignFile(FileIn, FileName + '.txt');

 reset(FileIn);

 FileFound := true;

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

31

 assignFile(FileOut, 'CMP' + FileName); // 1, 5

 rewrite(FileOut);

 readln(FileIn, HeaderLine);

 HeaderLine := leftStr(HeaderLine, length(HeaderLine) - 1)

+ 'C'; // 6

 writeln(FileOut, HeaderLine); // 2

 PixelCount := 1; // 7

 read(FileIn, PrevPixelChar);

 while not eoln(FileIn) do // 8

 begin

 read(FileIn, NextPixelChar);

 if NextPixelChar = PrevPixelChar // 2

 then

 PixelCount := PixelCount + 1 // 3

 else

 begin

 writeln(FileOut, PixelCount, ',', PrevPixelChar);

// 9, 10

 PrevPixelChar := NextPixelChar;

 PixelCount := 1; // 12

 end;

 end;

 writeln(FileOut, PixelCount, ',', PrevPixelChar); // 11

 closeFile(FileOut);

 closeFile(FileIn);

 except

 if not FileFound

 then

 DisplayError('File not found')

 else

 DisplayError('Error during compression');

 end;

end;

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

32

C#

03 1 int x, product, factor; // 1

Console.Write("Enter an integer greater than 1: "); //

x = Convert.ToInt32(Console.ReadLine()); // 2

product = 1; //

factor = 0; // 3

while (product < x) // 4

{

 factor++; //

 product = product * factor; // 5

}

if (x == product) // 6

{

 product = 1; // 7

 for (int n = 1; n < factor + 1; n++) // 8

 {

 product = product * n; //

 Console.WriteLine(n); // 9

 }

}

else

{

 Console.WriteLine("No result");

}

Console.ReadLine();

9

13 1 private static void MirrorImage(string[,] grid, FileHeader

header)

{ // 2

 string[,] newGrid = new string[MaxHeight, MaxWidth]; // 1

 ClearGrid(newGrid);

 for (int thisRow = 0; thisRow < header.Height; thisRow++)

//

 {

 for (int newColumn = 0; newColumn < header.Width;

newColumn++)

// 4

 {

 newGrid[thisRow, newColumn] = grid[thisRow,

header.Width - newColumn - 1];

// 3

 }

 }

 DisplayImage(newGrid, header);

}

private static void DisplayMenu()

{

 Console.WriteLine();

 Console.WriteLine("Main Menu");

 Console.WriteLine("=========");

 Console.WriteLine("L - Load graphics file");

 Console.WriteLine("D - Display image");

 Console.WriteLine("E - Edit image");

 Console.WriteLine("S - Save image");

 Console.WriteLine("M - Mirror image"); // 5

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

33

 Console.WriteLine("X - Exit program");

 Console.WriteLine();

}

private static void Graphics()

{

 string[,] grid = new string[MaxHeight, MaxWidth];

 ClearGrid(grid);

 FileHeader header = new FileHeader();

 bool programEnd = false;

 char menuOption;

 char answer;

 while (!programEnd)

 {

 DisplayMenu();

 menuOption = GetMenuOption();

 if (menuOption == 'L')

 {

 LoadFile(grid, header);

 }

 else if (menuOption == 'D')

 {

 DisplayImage(grid, header);

 }

 else if (menuOption == 'E')

 {

 EditImage(grid, header);

 }

 else if (menuOption == 'S')

 {

 SaveImage(grid, header);

 }

 else if (menuOption == 'M')

 {

 MirrorImage(grid, header); // 6

 }

 else if (menuOption == 'X')

 {

 programEnd = true;

 }

 else

 {

 Console.WriteLine("You did not choose a valid menu

option. Try again");

 }

 }

 Console.WriteLine("You have chosen to exit the program");

 Console.Write("Do you want to save the image as a graphics

file? (Y/N) ");

 answer = Convert.ToChar(Console.ReadLine());

 if (answer == 'Y' || answer == 'y')

 {

 SaveFile(grid, header);

 }

}

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

34

14 1 private static char FindSecretChar(int pixelValue, int key) //

4

{

 char character;

 int newValue;

 character = '_'; // 5

 newValue = pixelValue - key;

 if (newValue == 0)

 {

 character = ' '; // 6

 }

 else

 {

 if (newValue >= 1 && newValue <= 26) // 1

 {

 character = ((char)((int)'A' + newValue - 1)); // 2

 }

 }

 return character;

}

private static void LoadGreyScaleImage(StreamReader fileIn,

string[,] grid, FileHeader header)

{

 string nextPixel;

 int pixelValue;

 int key;

 string hiddenMessage;

 try

 {

 key = Convert.ToInt32(header.title[header.title.Length -

1].ToString()); // 7

 hiddenMessage = EMPTY_STRING;

 for (int row = 0; row < header.Height; row++)

 {

 for (int column = 0; column < header.Width;

column++)

 {

 nextPixel = fileIn.ReadLine();

 pixelValue = Convert.ToInt32(nextPixel);

 hiddenMessage = hiddenMessage +

FindSecretChar(pixelValue, key); // 3, 8

 grid[row, column] = ConvertChar(pixelValue);

 }

 }

 Console.WriteLine(hiddenMessage); // 9

 }

 catch (Exception)

 {

9

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

35

 DisplayError("Image data error");

 }

}

15 1 private static void CompressFile()

{

 bool fileFound = false;

 string headerLine, imageData;

 char prevPixelChar;

 int pixelCount = 0; // 7

 FileHeader header = new FileHeader();

 Console.Write("Which graphics file do you want to compress?

");

 string fileName = Console.ReadLine(); // 4

 try

 {

 StreamReader filein = new StreamReader(fileName +

".txt");

 fileFound = true; // 5

 StreamWriter fileOut = new StreamWriter("CMP" + fileName

+ ".txt"); // 1, 5

 headerLine = filein.ReadLine();

 headerLine = headerLine.Substring(0, headerLine.Length -

1) + "C"; // 6

 fileOut.WriteLine(headerLine);

 imageData = filein.ReadLine();

 prevPixelChar = imageData[0];

 foreach (char nextPixelChar in imageData) // 8

 {

 if (nextPixelChar == prevPixelChar) // 2

 {

 pixelCount++; // 3

 }

 else

 {

 fileOut.WriteLine(pixelCount + "," +

prevPixelChar); // 9, 10

 prevPixelChar = nextPixelChar;

 pixelCount = 1; // 12

 }

 }

 fileOut.WriteLine(pixelCount + "," + prevPixelChar); //

11

 fileOut.Close();

 filein.Close();

 }

 catch (Exception)

 {

 if (!fileFound)

 {

 DisplayError("File not found");

 }

 else

 {

 DisplayError("Error during compression");

12

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

36

 }

 }

}

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

37

Java

03 1 Console.write("Enter an integer greater than 1: "); //

int x = Integer.parseInt(Console.readLine()); // 2

int product = 1; //

int factor = 0; // 3 // 1

while (product < x) { // 4

 factor = factor + 1; //

 product = product * factor; // 5

}

if (x == product) { // 6

 product = 1; // 7

 for (int n = 1; n <= factor; n++) { // 8

 product = product * n; //

 Console.writeLine(n); // 9

 }

} else {

 Console.writeLine("No result");

}

9

13 1 void mirrorImage(String[][] grid, FileHeader header) { // 2

 String[][] newGrid = new String[MAX_HEIGHT][MAX_WIDTH]; //

1

 clearGrid(newGrid);

 for (int row = 0; row < header.height; row++) {

//

 for (int column = 0; column < header.width; column++)

{// 4

 newGrid[row][column] = grid[row][header.width - 1 -

column]; // 3

 }

 }

 displayImage(newGrid, header);

}

void displayMenu() {

 Console.writeLine();

 Console.writeLine("Main Menu");

 Console.writeLine("=========");

 Console.writeLine("L - Load graphics file");

 Console.writeLine("D - Display image");

 Console.writeLine("M - Mirror image"); // 5

 Console.writeLine("E - Edit image");

 Console.writeLine("S - Save image");

 Console.writeLine("X - Exit program");

 Console.writeLine();

}

void graphics() {

 String[][] grid = new String[MAX_HEIGHT][MAX_WIDTH];

 clearGrid(grid);

 FileHeader header = new FileHeader();

 boolean programEnd = false;

 while (!programEnd) {

 displayMenu();

 char menuOption = GetMenuOption();

 if (menuOption == 'L') {

 loadFile(grid, header);

6

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

38

 } else if (menuOption == 'D') {

 displayImage(grid, header);

 } else if (menuOption == 'M') {

 mirrorImage(grid, header); // 6

 } else if (menuOption == 'E') {

 editImage(grid, header);

 } else if (menuOption == 'S') {

 saveImage(grid, header);

 } else if (menuOption == 'X') {

 programEnd = true;

 } else {

 Console.writeLine("You did not choose a valid menu

option. Try again");

 }

 }

 Console.writeLine("You have chosen to exit the program");

 Console.write("Do you want to save the image as a graphics

file? (Y/N) ");

 String answer = Console.readLine();

 if (answer.equals("Y") || answer.equals("y")) {

 saveFile(grid, header);

 }

}

14 1 char findSecretChar(int pixelValue, int key) { // 4

 char character = '_'; // 5

 int newValue = pixelValue - key;

 if (newValue == 0) {

 character = ' '; // 6

 } else if (newValue >= 1 && newValue < 27) { // 1

 character = (char)((int)('A') + newValue - 1); // 2

 }

 return character;

}

void loadGreyScaleImage(BufferedReader fileIn, String[][] grid,

FileHeader header) {

 try {

 int key =

Integer.parseInt(header.title.charAt(header.title.length()-1) +

""); // 7

 String hiddenMessage = EMPTY_STRING;

 for (int row = 0; row < header.height; row++) {

 for (int column = 0; column < header.width;

column++) {

 String nextPixel = fileIn.readLine();

 int pixelValue = Integer.parseInt(nextPixel);

 grid[row][column] = convertChar(pixelValue);

 hiddenMessage = hiddenMessage +

findSecretChar(pixelValue, key); // 3, 8

 }

 }

 Console.println(hiddenMessage); // 9

9

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2020

39

 } catch (Exception e) {

 displayError("Image data error");

 }

}

15 1 void compressFile ()

{

 Console.write("Enter filename to compress: ");

 String fileName = Console.readLine(); // 4

 try {

 BufferedReader fileIn = new BufferedReader(new

FileReader(fileName + ".txt")); // 5

 BufferedWriter fileOut = new BufferedWriter(new

FileWriter("CMP" + fileName + ".txt")); // 1, 5

 String headerLine = fileIn.readLine();

 headerLine = headerLine.substring(0,

headerLine.length()-1) + "C"; // 6

 fileOut.write(headerLine + "\n");

 String imageData = fileIn.readLine();

 char previousPixelChar = imageData.charAt(0);

 int pixelCount = 0; // 7

 for (int pos = 0; pos < imageData.length(); pos++) { //

8

 char nextPixelChar = imageData.charAt(pos);

 if (nextPixelChar == previousPixelChar) { // 2

 pixelCount++; // 3

 } else {

 fileOut.write(pixelCount + "," +

previousPixelChar + "\n"); // 9, 10

 previousPixelChar = nextPixelChar;

 pixelCount = 1; // 12

 }

 }

 fileOut.write(pixelCount + "," + previousPixelChar +

"\n");

 // 11

 fileIn.close();

 fileOut.close();

 } catch (IOException e) {

 }

}

12

