Level 3 Certificate MATHEMATICAL STUDIES 1350/1

Paper 1

Mark scheme

June 2021
Version: 1.0 Final

MARK SCHEME - LEVEL 3 MATHEMATICAL STUDIES - 1350/1 - JUNE 2021

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Q	Answer	Mark	Comments	
$\mathbf{1}$	continuous		B1	
	Additional Guidance			

Q	Answer	Mark	Comments	
2 (a)	James' sample size is too small/ Kia's sample size is better James' method is more biased as all at a bus stop Kia's method is better as she uses more than one day James' method is quicker/cheaper Kia's method uses random sampling whereas James' method uses cluster sampling	B2	B1 each correct comparison	
	Additional Guidance			
	Two comments about the same aspect of the collection is B1 only eg James' method is quicker and Kia's method is more time-consuming			B1
	James method is more biased			B0
	James asks less people			B1
	James only asks people at a bus stop			B1
	James asks people at a bus stop			B0
	James only asks 10 people			B0
	Accept convenience or opportunity for cluster			
	Allow two comparisons in one answer space			
	Ignore incorrect statements if non-contradictory			

Q	Answer	Mark	Comments	
2(b)	20, 8, 2 or 19, 8, 3 or 19, 9, 2	B2	B1 19, 8, 2 or B1 $\frac{84}{130} \times 30$ or $19.4 \ldots$ or $\frac{36}{130} \times 30$ or $8.3 \ldots$ or $\frac{10}{130} \times 30$ or $2.3 \ldots$	
	Additional Guidance			

Q	Answer	Mark	Comments
	$9,45,66,74,78,80$ B1 Fully correct cumulative frequency graph joined with lines or smooth curve 3(a)	implied by correct heights allow one cumulative addition error	

Q	Answer	Mark	Comments	
3(b)	Correct reading for cf of 16 from their increasing graph	B2ft	allow 11900 or 11944 from interpolation B1 0.2×80 or 16 or correct ft reading for their 16 for an increasing graph	
	Additional Guidance			
	If an increasing histogram is drawn then only the B1 for 16 is available			
	Use of 16 may be implied from a mark at 16 on the vertical axis $\pm 1 / 2$ square			

Q	Answer	Mark	Comments	
3(c)	Alternative method 1			
	$\begin{aligned} & (80-\text { their } 50) \div 80(\times 100) \\ & \text { or } \\ & [0.37,0.38] \times 100) \end{aligned}$	M1	their 50 must be reading at 22000 for an increasing graph $\pm \frac{1}{2}$	
	[37, 38]	A1ft	ft their 50 which may be ro nearest integer	ded to
	Alternative method 2			
	$\left(\frac{8}{10} \times 21+8+4+2\right) \div 80(\times 100)$ or $30.8 \div 80(\times 100)$ or $31 \div 80(\times 100)$ or $[0.385,0.39](\times 100)$	M1	oe for $\frac{8}{10} \times 21$ allow rounding	
	[38.5, 39]	A1		
	Additional Guidance			
	If a cumulative histogram is drawn in part a) then there must be a vertical line up from £22000 to show where they are taking their reading			

Q	Answer	Mark	Comments	
4	Makes assumption about number of pupils in the school eg 1000	B1	allow 500 to 2500 oe eg 5 or 7 year groups with 300 students in each	
	Makes an assumption about proportion that have school meals eg 80\%	B1	allow 20% to 80% oe eg 300 in each year group of which 200 have school meals may include staff	
	Makes an assumption about the number of school days in a year eg 190	B1	allow 150 to 252 days or 5 or 6 days a week for 30-42 weeks per year	
	Works out their percentage \times their number of pupils \times their days in a school year eg $1000 \times 0.8 \times 190$	M1		
	Accurate answer for their calculations	A1ft	ft their assumptions	
	Additional Guidance			
	For the final 2 marks they may use numbers outside the allowed ranges. Example $100 \times 0.2 \times 365=7300$			$\begin{gathered} \text { B0B1B0M1 } \\ \text { A1ft } \end{gathered}$

Q	Answer	Mark		
	$(36000-26575) \times 0.09$ or 848.25	M1	oe repayment in year 1	
	$23700 \text { - their } 848.25$ or 22851.75	M1	amount owing on 31 August 2021 before interest added	
	their 22851.75×1.034 or 23628.71 or 23628.70	M1	oe amount owing 1 September 2021 their 22851.75 can be 23700 but cannot be 848.25	
	$\begin{aligned} & {[(37000)-(26575)] \times 0.09} \\ & \text { or } \\ & 938.25 \end{aligned}$	M1	new annual repayment	
	$\begin{aligned} & \text { (their } 23628.71 \text { - their } 938.25) \times 1.034 \\ & \text { or } \\ & 22690.46 \times 1.034 \end{aligned}$	M1	oe	
6	23461.92 or 23461.93 or 23461.94	A1	SC3 23523.65 or 23523.66	
	Additional Guidance			
	Adding the interest before deducting the payments can gain up to M3$\begin{aligned} & \text { eg }(36000-26575) \times 0.09=848.25 \\ & \quad 23700 \times 1.034=24505.80 \\ & 24505.80-848.25=23657.55 \\ & {[(37000)-(26575)] \times 0.09=938.25} \\ & 23657.55 \times 1.034-938.25=23523.66 \end{aligned}$			$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M0 } \\ \text { M1 } \\ \text { M0A0 } \end{gathered}$
	Adding interest to the payment(s) can gain up to M3$\begin{aligned} & \text { eg }(36000-26575) \times 0.09=848.25 \\ & \quad 848.25 \times 1.034=877.09 \\ & 23700-877.09=22822.91 \\ & \quad[(37000)-(26575)] \times 0.09=938.25 \\ & 22822.91-(938.25 \times 1.034)=21852.76 \end{aligned}$			$\begin{gathered} \text { M1 } \\ \text { M0 } \\ \text { M1 } \\ \text { M1 } \\ \text { M0A0 } \end{gathered}$

Q	Answer	Mark	Comments
7(a)	Alternative method 1		
	Works out a possible area for a 4-bedroom house $\text { eg } 10 \times 20$ or 11.5×29 or $[200,335]$	M1	
	3-bedroom plot assumption of area that is less than their area for 4-bedroom plot eg $300 \mathrm{~m}^{2}$	B1	
	2-bedroom plot assumption of area that is less than their assumption for the 3-bedroom plot eg $250 \mathrm{~m}^{2}$	B1	
	States an approximation for the length and width of the road	B1	pavement must be included length must be between 800 m and 1200 m and width $5.5+2 \times 1.35$ or $5.5+2 \times 2$
	Their length of road \times their width of road $\text { eg } 800 \times 9.5=7600 \mathrm{~m}^{2}$ or 0.76 hectares	M1	their length and width can be any values
	Works out plot used for 2-bedroom houses eg 0.25×20 or 5 or $0.25 \times(20-$ their amount for roads) eg $0.25 \times(20-0.76)=4.81$ hectares or $48100 \mathrm{~m}^{2}$	M1	accept rounding to 5 hectares 2-bedroom can be 25% of total plot or 25% of plot - roads

Q	Answer	Mark	Comments
7(a) cont'd	Assumption of proportional split between 3 and 4-bedroom houses eg (20 - their area for roads - their area for 2-bed houses) $\div 2$ eg $(20-0.76-4.81) \div 2=7.215$	B1	allow rounding
	Calculate number of houses for one of their three areas 2-bedroom eg $48100 \div 250=192$ or 3-bedroom eg $72150 \div 300=240$ or 241 or 4-bedroom eg $72150 \div 333=216$ or 217	M1	must be integer number of houses allow rounding to nearest ten
	Total of their 2, 3 and 4-bed houses eg $192+241+217=650$	A1	must be an integer

Alternative method 2 is on the next page

Q	Answer	Mark	Comments
$\begin{gathered} \text { 7(a) } \\ \text { cont'd } \end{gathered}$	Alternative method 2		
	Works out number of 4-bedroom houses per hectare eg $10000 \div(10 \times 20)$ or 50 or $10000 \div(11.5 \times 29) \text { or } 30$	M1	implied by number of houses in range $[30,50]$
	Assumption of number of 3-bedroom houses per hectare that is more than their 4-bedroom value eg their 4-bedroom $=40$ their 3-bedroom $=45$	B1	must be less than their 2-bedroom value
	Assumption of number of 2-bedroom houses per hectare that is more than their 3-bedroom value eg their 3-bedroom $=45$ their 2-bedroom $=50$	B1	
	State an approximation for the length and width of the road	B1	pavement must be included length must be between 800 m and 1200 m and width $5.5+2 \times 1.35$ or $5.5+2 \times 2$
	Their length of road \times their width of road eg $800 \times 9.5=7600 \mathrm{~m}^{2}$ or 0.76 hectares	M1	
	Works out plot used for 2-bedroom houses eg 0.25×20 or 5 or $0.25 \times(20-$ their amount for roads) eg $0.25 \times(20-0.76)=4.81$ hectares or $48100 \mathrm{~m}^{2}$	M1	accept rounding to 5 hectares 2-bedroom can be 25% of total plot or 25% of plot - roads
	Assumption of proportional split between 3 and 4-bedroom houses eg (20 - their area for roads - their area for 2 bed houses) $\div 2$ $\text { eg }(20-0.76-4.81) \div 2=7.215$	B1	allowing rounding

Q	Answer	Mark	Comments
7(b)	Acceptable explanation Example If the estimate for the area of roads was higher then there would/might have been fewer houses or If the estimate for the area of roads was lower then there would have been more houses. or If the proportion of 4-bedroom houses built was greater than 3bedroom then there would have been fewer houses built. or If the proportion of 4-bedroom houses built was less than 3bedroom then there would have been more houses built	B1	must relate to their assumption about the proportion or to their assumption about the amount of land not used for housing
	Additional Guidance		

Q	Answer	Mark	Comments
8(a)	(116000-100000) $\div 2$ or 8000	M1	
	4500	A1	
	Additional Guidance		

Q	Answer	Mark	Comments
8(b)	37500×0.2 or 7500	M1	basic rate tax
	$(150000-37500) \times 0.4$ or 45000	M1	higher rate tax
	$\begin{aligned} & (165000-150000) \times 0.45 \\ & \text { or } \\ & 15000 \times 0.45 \\ & \text { or } \\ & 6750 \end{aligned}$	M1	additional rate tax total tax 59250 implies M3
	$\begin{aligned} & (50000-9500) \times 0.12 \\ & \text { or } \\ & 40500 \times 0.12 \\ & \text { or } \\ & 4860 \end{aligned}$	M1	basic NI
	$\begin{aligned} & (165000-50000) \times 0.02 \\ & \text { or } \\ & 115000 \times 0.02 \\ & \text { or } \\ & 2300 \end{aligned}$	M1	higher NI total NI 7160 implies M2
	their 7500 + their 45000 + their $6750+$ their $4860+$ their 2300 or $59250+7160$	M1	totals their tax and NI values - at least one of each

8(b) cont'd	66410	A1	total tax and NI
	their $66410 \div 165000$ or $0.402 \ldots$ or $\frac{2}{5} \times 165000 \text { or } 66000$	M1	
	0.402 and Yes or 66410 and 66000 and Yes	A1ft	ft their 66410
	Additional Guidance		

Q	Answer	Mark		Comments
9(b)	Frequency density $96 \div 4$ or 24 or $96 \div 0.8$ or 120 (small squares) or $96 \div 8$ or 12 (rows of ten)	M1		
	Correct bar drawn width from 10 to 14 , height 2.4 cm	A1	$\pm \frac{1}{2}$ square	
	Additional Guidance			

Q	Answer	Mark	Comments
10	Alternative method 1		
	0.205 or 1.205 seen or used	M1	
	$1200=\frac{A}{1+\text { their } 0.205}+\frac{A}{(1+\text { their } 0.205)^{2}}$	M1	oe their 0.205 must have digits 205 and be less than 1 eg 0.0205 used
	$\begin{aligned} & 1200=\text { their } 0.83 A+\text { their }[0.688, \\ & 0.69] A \\ & \text { or } \\ & 1200=[1.5187,1.52] A \end{aligned}$	M1dep	calculates $1 \div$ their 1.205 and ($1 \div$ their $1.205)^{2}$ dep on 2nd M1
	$\begin{aligned} & 1200 \div \text { their } 1.52 \\ & \text { or } \\ & {[789.47,790.15]} \end{aligned}$	M1dep	dep on 2nd and 3rd M1
	790	A1	
	Alternative method 2		
	0.205 or 1.205 seen or used	M1	
	$1200=\frac{A}{1+\text { their } 0.205}+\frac{A}{(1+\text { their } 0.205)^{2}}$	M1	oe eg 1.205 used their 0.205 must have digits 205 and be less than 1 eg 0.0205 used
	$1200=\frac{\text { their } 1.205 A+A}{\text { their } 1.205^{2}}$	M1dep	$\begin{aligned} & \text { oe } \\ & \text { dep on } 2^{\text {nd }} \text { M1 } \end{aligned}$
	$\begin{aligned} & \frac{1200 \times \text { their } 1.205^{2}}{\text { their } 2.205}=A \\ & \text { or } 790.2 \ldots . . \end{aligned}$	M1dep	oe dep on 2nd and 3rd M1
	790	A1	
		ditional	uidance

