AQA

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

Level 3 Certificate MATHEMATICAL STUDIES

Paper 2C Graphical Techniques

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a clean copy of the Preliminary Material and the Formulae Sheet (enclosed)
- a scientific calculator or a graphics calculator
- a ruler.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise, marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The final answer to questions should be given to an appropriate degree

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- You may not refer to the copy of the Preliminary Material that was available prior to this examination. A clean copy is enclosed for your use.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 .
- You may ask for more answer paper or graph paper, which must be tagged securely to this answer booklet.

Answer all questions in the spaces provided.

1 Eva is a newspaper reporter.
She collected data about the degree results achieved by students at a university over 3 years.
Some students failed their course and were not awarded a degree.
Eva recorded the results in this table.

		Degree class awarded						
		First	Upper Second	Lower Second	Third	Fail	Total completed	
Year course completed	$\mathbf{2 0 1 8}$	2615	1750	981	371	93	5810	
	2019	3358	2300	1042	140	60	6900	
	$\mathbf{2 0 2 0}$	5450	1509	375	229	77	7640	

1 (a) Work out the ratio of students in 2019 awarded an Upper Second class degree to the total number of students completing their course that year.

Circle your answer.
$1: 2$
$2: 1$
$1: 3$
$3: 1$

1 (b) In an article on the data Eva made the following statements.

Statement 1

‘The average amount a student paid for a degree course was $£ 27000$. This means that the university collected more than half a billion pounds from these students.'

Statement 2

'The percentage of students in the year group awarded a First class degree increased by more than half from 2018 to 2020'

Does the data support these statements?
Show working to support your answers.

Statement 1
\qquad
\qquad
\qquad
\qquad

Statement 2

\qquad
\qquad
\qquad
\qquad

Turn over for the next question

2 Use Plastic waste from the Preliminary Material.
2 (a) Suggest two improvements that could be made to the charts in the Preliminary Material. [2 marks] Improvement 1
\qquad
\qquad
\qquad
Improvement 2
\qquad
\qquad
\qquad

2 (b) Readers of the extract from the briefing paper commented that it was difficult to follow in places.

Give three reasons why they might have said this.
You should not comment on the charts.

Reason 1
\qquad
\qquad
\qquad
Reason 2
\qquad
\qquad
\qquad
Reason 3
\qquad
\qquad
\qquad

2 (c) The following statements were made about the data on two online forums.

The amount of plastic waste going to landfill fell by more than $\mathbf{6 0 \%}$ from 2012 to 2016
Ecofriends

UK production of plastic waste in 2016 had increased by about 0.3 million tonnes since 2010

Using the data given, comment on the validity of these statements.

Ecofriends
\qquad
\qquad
\qquad
\qquad
Greenusers
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

2 (d) The bar chart shows information about the exports of plastic waste from the UK in 2018

State two errors in the bar chart.

Error 1
\qquad
\qquad
\qquad

Error 2
\qquad
\qquad
\qquad

3 River levels in the UK are measured by a network of monitoring stations.
The chart below shows the data from one station on the river Don from
1 November 2019 to 1 March 2020
This section of river floods when the water level exceeds 4.8 metres.
Water level in the river Don

3 (a) Estimate the percentage of time during this 4-month period that the river flooded.
[3 marks]
\qquad
\qquad
\qquad
\qquad

Answer \qquad \%

The graph below models the water level, w metres, for a period of time, t hours, before and after 12.00 noon on 9 November 2019

3 (b) For $-96 \leqslant t<0$, which of the following types of function represents the data? Circle your answer.

3 (c) Use the graph above to work out the date and time of the maximum water level in this 192-hour period.
\qquad
\qquad
\qquad
\qquad

Date \qquad Time \qquad

3 (d) After 12.00 noon on 9 November 2019, the water level, w, is modelled by the equation

$$
w=A t+B \quad t \geqslant 0
$$

where A and B are constants.
3 (d) (i) Use the graph to work out estimates for the values of A and B
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
A=
$$

\qquad $B=$ \qquad
3 (d) (ii) The water level is classed as 'normal' when below 3.18 metres.
Use the equation to forecast on what date after 9 November 2019 the water level would have dropped back below 3.18 metres.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 One of the busiest air routes between Europe and North America is between London Heathrow and New York JFK.

4 (a) The flying distance between these airports is 5540 km The flight time for a plane on this route is 8 hours.

Work out the average speed of a plane on this route.
\qquad
\qquad

Answer \qquad km/h

4 (b) The cruising speed of planes on this route is $900 \mathrm{~km} / \mathrm{h}$
Planes fly at cruising speed for the majority of the flight time.
Using your answer to Question 4(a), comment on the speed of a plane on this route when not at cruising speed.
[1 mark]
\qquad
\qquad
\qquad

4 (c) When taking off, planes start from rest.
They accelerate uniformly until they reach their lift-off speed.

- Plane A has a greater lift-off speed than plane B.
- Planes A and B both take the same time to reach lift-off speed.

4 (c) (i) Sketch the speed-time graphs for planes A and B, from the start of their acceleration to when they reach their lift-off speed.

4 (c) (ii) Plane C has
the same lift-off speed as plane A
and
the same acceleration as plane B
Compare the time for plane C to reach lift-off speed to the time for planes A and B.
[1 mark]
\qquad
\qquad
\qquad
\qquad

5 A social media post can very quickly receive large viewing figures.
5 (a) The total number of views, v, of one post t minutes after being posted on social media is modelled by the equation

$$
v=\mathrm{e}^{0.12 t}
$$

The model is only a good predictor of views for certain values of t
5 (a) (i) When might this model not be a good predictor for the total number of views?
Suggest a reason why.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (a) (ii) Use the model to estimate the number of minutes it would take the post to reach one million total views.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad minutes

5 (b) Two adverts are posted on social media at the same time.
They receive N total number of views, m minutes after being posted.
Advert A has linear growth, with total number of views modelled by the equation

$$
N_{A}=1278 m
$$

Advert B has exponential growth, with total number of views modelled by the equation

$$
N_{B}=0.001 \mathrm{e}^{m}
$$

Work out the value of m for which the total numbers of views of both adverts are predicted to have the same rate of change.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
m=
$$

\qquad

Turn over for the next question

6 A domestic oil tank of height 140 cm has an octagonal cross-section with two square hollow sections of height $x \mathrm{~cm}$

It takes 128 days to use all the oil when it is used at a constant rate.
The graph shows the oil level for the 128 days.

6 (a) Use the graph to work out the height of the hollow sections, marked x on the diagram.
[2 marks]
\qquad
\qquad

Answer \qquad cm

Question 6 continues on the next page

6 (b) A different tank is a cuboid of height 100 cm
During one week the rate of oil use increases at a steady rate.
The table shows oil level readings for the week.

Day	0	1	2	3	4	5	6	7
Oil level $(c m)$	100	99.5	98.9	98.1	97.1	95.9	94.4	92.5

6 (b) (i) On the grid below, plot a graph modelling this data.

6 (b) (ii) Use your graph to estimate the instantaneous rate at which the oil level is falling after 4 days.
State the units of your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

6 (b) (iii) Sketch a graph of the oil level in the tank if the rate at which the oil is being used decreases constantly over time.

$7 \quad$ An air-freshener sprays particles into the air.
The graph shows the concentration of particles in the air over time, measured in parts per million (ppm).

The concentration, $C \mathrm{ppm}$, at time t minutes after the air-freshener is sprayed, is modelled by the equation

$$
C=A e^{k t}
$$

where A and k are constants.
7 (a) Explain why k must be negative.
\qquad
\qquad

7 (b) Use the graph to work out the values of A and k.
\qquad
$A=$ $k=$ \qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
mission to reproduce all copyright material has been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact yright Team.

