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General Introduction to the Autumn Series  

This has been another unusual exam series in many ways. Entry patterns have been very different 
from those normally seen in the summer, and students had a very different experience in 
preparation for these exams. It is therefore more difficult to make meaningful comparisons between 
the range of student responses seen in this series and those seen in a normal summer series. The 
smaller entry also means that there is less evidence available for examiners to comment on. 
 
In this report, senior examiners will summarise the performance of students in this series in a way 
that is as helpful as possible to teachers preparing future cohorts while taking into account the 
unusual circumstances and limited evidence available.  
 
  
Overview of Entry  

While the size of the cohort for this exam was exceptionally small it was pleasing to see that all of 
the marks available on the paper were achievable and some students, who had clearly prepared 
thoroughly, performed very well.  
 
The average performance of students on this paper was lower than that usually seen in a year with 
a greater entry. 
 
 
Comments on Individual Questions 

Question 1 
Of the four multiple-choice questions this one was answered most successfully. The most 

commonly selected incorrect response was  
 
Question 2 
Only a minority of students selected the correct response. Almost as many students chose the 

incorrect d 1
d 5
y
x x
= . It should be noted that a calculator could have been used to check a numerical 

value for this question. 
 
Question 3 
This was the second most successfully answered multiple-choice question. 
 
Question 4 
This question was the least successful of the multiple-choice questions, with the most common 
choice being option 2. 
 
Question 5 
Around 80% of students achieved full marks for part (a) and around two-thirds made some 
progress with part (b).  
Many students did not realise that they had to find the point of intersection of the two lines so that 
the correct distance could be found. The option to use a calculator to solve the simultaneous 
equations was overlooked by many. Students should feel confident in doing this: it is what 
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examiners expect to see and the given equation was deliberately stated in a form which makes it 
easier to enter into a simultaneous equation solver. 
 
Question 6 
Most students made a good start with part (a). The most common mistakes seen were students 
using the formula for the sum to n terms to find the nth term and vice versa. Once both equations 
had been found, there was another opportunity to solve simultaneous equations on a calculator, 
which most chose to do by hand. 
 
In part (b), most students were able to form an expression for the sum of the new series, but many 
struggled to form the equation using the sum of the series given in part (a). Once the equation was 
formed it could be solved on a calculator. A few very efficient complete solutions were seen.  
 
Question 7 
The first three parts of this question are very routine. For the change of sign argument in part (a), 
the equation given in the question must first be rearranged so that it is equal to zero, otherwise the 
“change of sign” is meaningless, and the argument is incomplete. Many students did not rearrange 
to form such an equation and were unable to achieve any marks. 
 
A high proportion of students were successful with parts (b) and (c). For part (c) it is useful to know 
how to use your calculator efficiently to perform an iterative calculation. You can perform iterative 
calculations such as this by entering 1.5, pressing “=” and then using the “Ans” key. 
 

 
 

All you need to do now is press “=” to get the next answer. Care should be taken to round answers 
to the required number of decimal places and label answers with x2, x3 and x4 to avoid confusion 
for the examiner. 
 
Part (d) caused difficulty for many students who often gave too many decimal places so that their 
interval was not of the required length. It should be clear from the oscillating nature of the values 
found for xn that 1.5743 1.5748α≤ ≤ , so one possible interval of width 0.001 is given by 
1.574 1.575α≤ ≤ .  
 
Question 8 
Around two-thirds of students were able to make some progress with part (a), usually using 
sin 2θ 2sin θcosθ= . Progress often stalled at this point with many unable to obtain either 2cot θ or 

2cosec θ  by dividing by 2sin θ . 
 
Part (b) was designed to follow on from part (a), which is why the word “hence” is used, but not all 
students spotted the link. It should also be noted that this question could be solved very easily on 
many permitted calculators. You are not asked for any justification or working, so correct answers 
would be awarded full marks. The same applies to part (c). 
 
Question 9 
This was a very standard piece of bookwork, so it was vital that all the steps were shown clearly, 
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10log of both sides. Many students did not show this first step and were 
unable to achieve any marks as a result. 
 
The second mark was for applying a log rule to show that  

 ( )10 10 10 10log log 10 log log 10kt ktP A A= × = +  
The third mark was for a completely correct argument using another log rule to show that  

10 10log logP A kt= +  
 
Note that this is a linear relationship as 10log Aand k are constants so that 10log Awould be the “y-
intercept” and k would be the gradient, but this explanation did not need to be stated explicitly. 
 
Part (b) was completed successfully by the majority of students. 
 
Part (c)(i) was a “show that” question. It is important that students communicate clearly in such 
questions, as  often the examiner is left to guess what is intended. The best solutions showed how 

k was being calculated, for example, 2.41 1.88 0.0212 0.02
25

k −
= = ≈ , which achieved full marks.  

Just a calculation, with no mention of k or concluding approximation, for example, 
2.41 1.88 0.0212

25
−

= , would have achieved only one mark. 

 
The majority of students gave a correct value for A and used it to answer part (d), but many forgot 
to include the correct units, namely “millions of tonnes,” in their answer. 
 
Part (e) gave another opportunity to set up an equation and then solve it on a calculator. Many 
students solved by taking logs, and often made mistakes. 
 
In part (f) it was important to answer in context and to comment specifically on the global 
production of plastics. Vague or one-word answers like “Extrapolation” did not gain any credit. 
Only about one-fifth of students scored this mark. 
 
A common mistake was to talk about the global production of plastics not “staying the same.” This 
does not answer the question as the model is not based on data in which production does “stay the 
same.” 
 
Question 10 
Part (a) was a standard use of the quotient rule. A majority of students scored at least 2 marks, 
with the third mark often lost through poor structure or lack of a complete argument. 
 
Part (b) discriminated very well between students with over three-quarters making some progress, 
but only the stronger students realised the need to use the result given in part (a). 
 
Question 11 
This question proved to be one of the most challenging on the paper, with less than a third of 
students making any progress. Most did not realise they had to solve a differential equation and 
made no attempt to separate the variables. Of those students who did make progress, a common 
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31 2
18 9
x

y
− = − was often 

followed by the incorrect 3

18 9
2

y
x

− = − . A few solutions were seen where the answer was “fully 

justif[ied]” with a clear statement that 𝑦𝑦 cannot equal zero and concluding that C intersects the 
coordinate axes at exactly one point. 
 
Question 12 
Question (a) was accessible to most students with around half scoring at least 3 marks. It was 
pleasing to see that implicit differentiation was completed successfully in many cases. It is worth 

noting that the question does not ask for an expression for d
d
y
x

, so early substitution of 4, 0x y= =  

makes rearranging much easier: 
d d d2 2 2 2 4 2
d d d
y y yx y x y
x x x

+ + + = +  

becomes 
d d d d8 0 8 0 4 2 4 6
d d d d
y y y y
x x x x

+ + + = + ⇒ = −  

 
Part (b) was designed to be answered even if errors had been made in part (a). The A1F indicates 
that you could obtain both marks following through an incorrect x value from part (a). It is, 
therefore, important that working is clear so that the examiner can follow how a solution is 
obtained. Some students only scored 1 mark as they did not rearrange their equation into the 
required form. 
 
Question 13 

Over three-quarters of students made progress with part (a) and demonstrated that 1 0
5

P  − = 
 

, 

but little over a third scored full marks. Most either made an incomplete concluding statement or 
got it the wrong way around, eg writing  (5𝑥𝑥 + 1) is a factor of 𝑃𝑃(𝑥𝑥) implies 𝑃𝑃 �− 1

5
� = 0 

 
Part (b) was completed very successfully with most students scoring full marks, although many 
students overcomplicated this part, using algebraic long division. All permitted calculators will solve 
a cubic equation which should enable you to simply write down the answer, using the factor 
theorem again. 
 
As expected, part (c) was very challenging. While a fair number of students realised they could use 
the result from part (b) to factorise, giving ( )( )( )3 2250 300 110 12 2 5 1 5 2 5 3n n n n n n+ + + = + + + , 
very few students were able to make any further progress. 
 
Question 14 
Part (a) was quite accessible, with three-quarters of students making some progress. A common 
mistake was to try to eliminate t from the parametric equations and students who took this 
approach were unsuccessful. 
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In part (b) many students seemed unfamiliar with the idea of finding the area under a curve defined 
parametrically. The “show that” question in (b)(ii) was often attempted with little success due to 
poor use of notation and a lack of a clear structured argument. 
 
The final part, (b)(iii), was intended to be accessible even if errors were made in the rest of the 
question. The integral given in (b)(ii) simply needed to be evaluated on a calculator. 
 
Question 15 
Part (a) was very accessible, with nearly 60% of students scoring at least 2 marks. The third mark 
was often lost through a lack of structure or unclear working. To achieve full marks the argument 
needed to start with sin sin cos 2x x x−  and clearly demonstrate that it is approximately 32x . 
 
Around 40% of students understood that they had to form an integral for part (b) and of those who 
did, most made good progress. Writing the final answer in the correct form proved to be very 
challenging, with few students achieving the last mark. 
 
Part (c) was intended to be challenging: while some mentioned small angles, answers were often 
not specific enough and did not refer to 6.3 or 6.4 as not being small. 
 
 
Concluding Remarks 

When compared with previous papers, the marks available are accessible and the level of difficulty 
of the questions is broadly comparable despite the lower overall attainment. 
 
Areas of the specification where students performed particularly well include coordinate geometry, 
application of arithmetic sequence formulae, iterative solutions of equations, modelling with 
exponentials and factorising polynomials. 
 
It was particularly noticeable in this series that students seemed reluctant to make full and effective 
use of their calculators. This is an important and useful resource, which can save a lot of time 
when used properly. Students should feel confident that they will receive full credit for solving 
equations on their calculators when they are simply asked to find an answer. More detailed 
working is required if the question requires something to be shown. 
 
Throughout this paper, students often lost marks in “show that” style questions through a lack of 
attention to detail, omission of a clear starting point and/or conclusion, and poor or inconsistent use 
of notation or mathematical symbols. 
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Mark Ranges and Award of Grades 
 
Grade boundaries and cumulative percentage grades are available on the Results Statistics 
page of the AQA Website. 
 
 
 

http://www.aqa.org.uk/exams-administration/about-results/results-statistics
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