

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

AS FURTHER MATHEMATICS

Paper 1

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
TOTAL	

Answer all questions in the spaces provided.

1 The complex number ω is shown below on the Argand diagram.

Which of the following complex numbers could be ω ?

Tick (✓) one box.

[1 mark]

$$\cos\left(-2\right)+\mathrm{i}\sin\left(-2\right)$$

$$\cos{(-1)} + i\sin{(-1)}$$

$$\cos(1) + i\sin(1)$$

$$\cos(2) + i\sin(2)$$

Given that f(x) = 3x - 1 find the mean value of f(x) over the interval $4 \le x \le 8$

Circle your answer.

[1 mark]

6

11

17

23

3 The matrix \mathbf{M} represents a rotation about the x-axis.

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & \frac{\sqrt{3}}{2} \\ 0 & b & -\frac{1}{2} \end{bmatrix}$$

Which of the following pairs of values is correct?

Tick (✓) one box.

[1 mark]

$$a = \frac{1}{2} \quad \text{and} \quad b = \frac{\sqrt{3}}{2}$$

$$a = \frac{1}{2} \quad \text{and} \quad b = -\frac{\sqrt{3}}{2}$$

$$a = -\frac{1}{2}$$
 and $b = \frac{\sqrt{3}}{2}$

$$a = -\frac{1}{2} \quad \text{and} \quad b = -\frac{\sqrt{3}}{2}$$

The point (2, -1) is invariant under the transformation represented by the matrix ${\bf N}$ 4 Which of the following matrices could be N?

Circle your answer.

[1 mark]

$$\begin{bmatrix} 4 & 6 \\ 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 6 \\ 2 & 5 \end{bmatrix} \qquad \begin{bmatrix} 6 & 5 \\ 4 & 2 \end{bmatrix} \qquad \begin{bmatrix} 5 & 2 \\ 6 & 4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$

Turn over for the next question

5	Show that the vectors $\begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 4 \\ 1 \end{bmatrix}$ are perpendicular.	[2 marks]
6	Prove the identity $\cosh^2 x - \sinh^2 x = 1$	[2 marks]

7	Show that the Maclaurin series for $\ln (e + 2ex)$ is	
	$1 + 2x - 2x^2 + ax^3 - \dots$	
	where a is to be determined.	[3 marks]
	Turn over for the next question	

8	Stephen is correctly told that $(1 + i)$ and -1 are two roots of the polynomial equation
	$z^3 - 2iz^2 + pz + q = 0$
	where p and q are complex numbers.
8 (a)	Stephen states that $(1-i)$ must also be a root of the equation because roots of polynomial equations occur in conjugate pairs.
	Explain why Stephen's reasoning is wrong. [1 mark]
8 (b)	Find p and q
	[5 marks]

-	
	 -
	<u></u>
	
Turn over for the next question	

9 (a)	Use the standard formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that	
	$\sum_{r=1}^{n} r(r+3) = an(n+1)(n+b)$	
	where a and b are constants to be determined.	[4 marks]

$\sum_{r=n+1}^{5n} r(r+3)$	
r=n+1	[3 1

10	Matrix A is given by	
	$\mathbf{A} = \begin{bmatrix} 3 & i-1 \\ i & 2 \end{bmatrix}$	
10 (a)	Show that $\det \mathbf{A} = a + i$ where a is an integer to be determined.	[2 marks]
10 (b)	Matrix B is given by	
	$\mathbf{B} = egin{bmatrix} 14-2\mathrm{i} & b \ c & d \end{bmatrix}$ and $\mathbf{AB} = p\mathbf{I}$	
	where $b,c,d\in\mathbb{C}$ and $p\in\mathbb{N}$	
	Find b, c, d and p	[6 marks]

_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
	Turne and facilities and the second second
	Turn over for the next question

11 (a)	Show that, for all positive integers r ,		
	$\frac{1}{(r-1)!} - \frac{1}{r!} = \frac{r-1}{r!}$	[1 mark]	
11 (b)	Hence, using the method of differences, show that		
	$\sum_{r=1}^n \frac{r-1}{r!} = a + \frac{b}{n!}$ where a and b are integers to be determined.		
		[3 marks]	

•	
•	
	Town area for the most sever the
	Turn over for the next question

12	The equation $x^3 - 2x^2 - x + 2 = 0$ has three roots. One of the roots is 2	
12 (a)	Find the other two roots of the equation.	
		[1 mark]
12 (b)	Hence, or otherwise, solve	
	$\cosh^3\theta - 2\cosh^2\theta - \cosh\theta + 2 = 0$	
	giving your answers in an exact form.	
		[4 marks]

$\sum_{r=1}^{n} 2^{-r} = 1 - 2^{-n}$	
r=1	[4 1

14	Curve C_1 has equation
	$\frac{x^2}{16} + \frac{y^2}{4} = 1$
14 (a)	Curve C_2 is a reflection of C_1 in the line $y = x$
	Write down an equation of C_2 [1 mark]
14 (b)	Curve C_3 is a circle of radius 4, centred at the origin.
	Describe a single transformation which maps C_1 onto C_3 [2 marks]
14 (c)	Curve C_4 is a translation of C_1 The positive x -axis and the positive y -axis are tangents to C_4
14 (c) (i)	Sketch the graphs of C_1 and C_4 on the axes opposite. Indicate the coordinates of the x and y intercepts on your graphs. [2 marks]

 $y \uparrow$ O14 (c) (ii) Determine the translation vector. [2 marks] **14 (c) (iii)** The line y = mx + c is a tangent to both C_1 and C_4 Find the value of m[2 marks]

Two submarines are travelling on different straight lines. The two lines are described by the equations

$$\mathbf{r} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} \quad \text{and} \quad \frac{x-5}{4} = \frac{y}{2} = 4 - z$$

15 (a) (i) Show that the two lines intersect. [3 marks] **15 (a) (ii)** Find the position vector of the point of intersection. [1 mark]

15 (b)	Tracey says that the submarines will collide because there is a common point on the two lines.			
	Explain why Tracey is not necessarily correct.	[1 mark]		
45 ()				
15 (c)	Calculate the acute angle between the lines $\mathbf{r} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} \text{and} \frac{x-5}{4} = \frac{y}{2} = 4 - z$			
	Give your angle to the nearest 0.1°	[3 marks]		

16 Curve C has equation $y = \frac{ax}{x+b}$ where a and b are constants.

The equations of the asymptotes to C are x = -2 and y = 3

16 (a) Write down the value of a and the value of b

[2 marks]

16 (b) The gradient of *C* at the origin is $\frac{3}{2}$

With reference to the graph, explain why there is exactly one root of the equation

$$\frac{ax}{x+b} = \frac{3x}{2}$$

[2 marks]

$\frac{ax}{x+b} \le 1 - x$	
x + b	[4 n

17	The curve C_1 has polar equation $r=2a(1+\sin\theta)$ for $-\pi<\theta\leq\pi$ where a is a positive constant.
	C ₁ O M Initial line
	The point M lies on C_1 and the initial line.
17 (a)	Write down, in terms of <i>a</i> , the polar coordinates of <i>M</i> [1 mark]
17 (b)	N is the point on C_1 that is furthest from the pole O Find, in terms of a , the polar coordinates of N [2 marks]

Ш		Ш		
 •••	2	 2	 	•

17 (c)	The curve C_2 has polar equation $r=3a$ for $-\pi < \theta \leq \pi$ C_2 intersects C_1 at points P and Q	
	Show that the area of triangle NPQ can be written in the form	
	$m\sqrt{3}a^2$	
	where m is a rational number to be determined.	[5 manha]
		[5 marks]
	Question 17 continues on the next page	

On the initial line below, sketch the graph of $r=2a(1+\cos\theta)$ for $-\pi<\theta\leq\pi$ Include the polar coordinates, in terms of a, of any intersection points with the initial line. [2 marks]

O Initial line

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

