AQA

AS

Physics data and formulae

For use in exams from the June 2016 Series onwards
[Turn over]

DATA - FUNDAMENTAL CONSTANTS AND VALUES

QUANTITY SYMBOL VALUE UNITS
speed of light in vacuo
permeability of free space
permittivity of
free space
magnitude of
the charge of electron
the Planck constant
gravitational $\quad G \quad 6.67 \times 10^{-11} \quad \mathrm{~N} \mathrm{~m}^{\mathbf{2}} \mathrm{kg}^{-2}$
constant
the Avogadro $\quad N_{\text {A }} \quad 6.02 \times 10^{23} \quad \mathrm{~mol}^{-1}$ constant
molar gas
\boldsymbol{R}
8.31
$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
constant
the Boltzmann k constant
c
$3.00 \times 10^{8} \quad \mathrm{~m} \mathrm{~s}^{-1}$
$\mu_{0} \quad 4 \pi \times 10^{-7} \quad \mathbf{H ~ m}^{-1}$
ε_{0}
$8.85 \times 10^{-12} \quad \mathrm{~F} \mathrm{~m}^{-1}$
e $\quad 1.60 \times 10^{-19} \quad \mathrm{C}$
h
$6.63 \times 10^{-34} \quad \mathrm{~J}$ s

molar gas constant	R	$\mathbf{8 . 3 1}$	$\mathrm{JK}^{-1} \mathbf{m o l}^{-1}$

QUANTITY SYMBOL VALUE UNITS
the Stefan
σ
5.67×10^{-8}
$\mathbf{W m}^{-2} \mathrm{~K}^{-4}$
constant
the Wien
α
2.90×10^{-3}
m K
constant
electron rest mass
(equivalent to
$5.5 \times 10^{-4} \mathrm{u}$)
magnitude of
9.11×10^{-31}
kg electron charge/mass ratio
proton rest
mass
(equivalent to
1.00728 u)
proton
charge/mass ratio
$\frac{e}{m_{\mathrm{e}}}$
$m_{p} \quad 1.67(3) \times 10^{-27} \quad \mathbf{k g}$
Ckg^{-1}
neutron rest $\quad m_{n} \quad 1.67(5) \times 10^{-27} \quad \mathrm{~kg}$
(equivalent to
1.00867 u)
[Turn over]
QUANTITY SYMBOL VALUE UNITS

gravitational field strength	g	$\mathbf{9 . 8 1}$	$\mathbf{N ~ k g}^{-1}$

acceleration due to gravity	g	9.81	m s
atomic mass unit	u	$\mathbf{1 . 6 6 1} \times 10^{-27}$	kg

(1 u is
equivalent to
931.5 MeV)

ALGEBRAIC EQUATION

quadratic equation $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

ASTRONOMICAL DATA
BODY MASS/kg MEAN RADIUS/m
Sun $\quad 1.99 \times 10^{30} \quad 6.96 \times 108$

Earth
5.97×1024
6.37×106

GEOMETRICAL EQUATIONS

arc length

$$
=r \theta
$$

circumference of circle

$$
=2 \pi r
$$

area of circle

$$
=\pi r^{2}
$$

curved surface area of cylinder $=2 \pi r h$
area of sphere
$=4 \pi r^{2}$
volume of sphere

$$
=\frac{4}{3} \pi r^{3}
$$

[Turn over]

PARTICLE PHYSICS

CLASS	NAME	SYMBOL	REST ENERGY/MeV
photon	photon	γ	0
lepton	neutrino	v_{e}	0
	electron	$\boldsymbol{e}^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathbf{K}^{ \pm}$	493.821
baryons	proton	\mathbf{K}^{0}	497.762
	neutron	\mathbf{n}	938.257

PROPERTIES OF QUARKS

antiquarks have opposite signs

TYPE	CHARGE	BARYON NUMBER	STRANGENESS
\mathbf{u}	$+\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{e}$	$+\frac{1}{3}$	$\mathbf{0}$
\mathbf{d}	$-\frac{1}{3} e$	$+\frac{1}{3}$	$\mathbf{0}$
\mathbf{s}	$-\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{e}$	$+\frac{1}{3}$	$\mathbf{- 1}$

PROPERTIES OF LEPTONS

		Lepton number
Particles:	$\mathrm{e}^{-}, \nu_{\mathrm{e}} ; \mu^{-}, \nu_{\mu}$	+1
Antiparticles:	$\mathrm{e}^{+}, \overline{\nu_{\mathrm{e}}}, \mu^{+}, \overline{v_{\mu}}$	-1

[Turn over]

PHOTONS AND ENERGY LEVELS

photon energy

$$
E=h f=\frac{h c}{\lambda}
$$

photoelectricity

$$
h f=\phi+E_{\mathrm{k}(\max)}
$$

energy levels

$$
h f=E_{1}-E_{\mathbf{2}}
$$

de Broglie wavelength $\quad \lambda=\frac{h}{p}=\frac{h}{m v}$

WAVES

wave speed $\quad c=f \lambda \quad$ period $\quad f=\frac{1}{T}$
first
harmonic

$$
f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}
$$

fringe spacing

$$
w=\frac{\lambda D}{s}
$$

diffraction grating $d \sin \theta=n \lambda$
refractive index of a substance $s, n=\frac{c}{c_{\mathrm{s}}}$
for two different substances of refractive indices n_{1} and n_{2},
law of refraction $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$
[Turn over]

MECHANICS

moments \quad moment $=\boldsymbol{F d}$
velocity and
acceleration
$v=\frac{\Delta s}{\Delta t}$

$$
a=\frac{\Delta V}{\Delta t}
$$

equations of motion
$v=u+a t$
$\mathbf{s}=\left(\frac{u+v}{2}\right) t$
$v^{2}=u^{2}+2 a s \quad s=u t+\frac{a t^{2}}{2}$
force
$\boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}$
force
impulse
work, energy
and power
$W=F s \cos \theta$

$$
\begin{aligned}
& E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{\mathrm{p}}=m g \Delta h \\
& P=\frac{\Delta W}{\Delta t}, P=F v \\
& \text { efficiency }=\frac{\text { useful output power }}{\text { input power }}
\end{aligned}
$$

MATERIALS

density $\quad \rho=\frac{m}{V}$
Hooke's law $\quad F=k \Delta L$

Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }} \quad \begin{gathered}\text { tensile stress }= \\ \text { tensile strain }= \\ \\ \end{gathered}$
energy stored $\quad E=\frac{1}{2} F \Delta L$
[Turn over]

ELECTRICITY

current and pd $\quad I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity

$$
\rho=\frac{R A}{L}
$$

resistors in series

$$
R_{\mathrm{T}}=R_{\mathbf{1}}+R_{\mathbf{2}}+R_{\mathbf{3}}+\ldots
$$

resistors in parallel

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

power

$$
\mathrm{P}=V I=I^{2} \mathrm{R}=\frac{V^{2}}{R}
$$

emf

$$
\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)
$$

END OF DATA SHEET

BLANK PAGE

BLANK PAGE

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

