Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
A-level

PHYSICS

Paper 3
Section A
7408/3A
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet - a protractor.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO
 DO SO

4

SECTION A

Answer ALL questions in this section.

0	1

FIGURE 1, on the opposite page, shows apparatus used to investigate the inverse-square law for gamma radiation.

5

FIGURE 1

FIGURE 1 continues on page 6.
||||||||||||| [Turn over]

6

FIGURE 1 CONTINUED

detail showing source, socket and clamp B

A sealed source that emits gamma radiation is held in a socket attached to clamp B. The vertical distance between the open end of the source and the bench is $\mathbf{1 3 8 ~ m m}$.

A radiation detector, positioned vertically above the source, is attached to clamp T.

A student is told NOT to move the stands closer together.

Describe a procedure for the student to find the value of d, the vertical distance between the open end of the source and the radiation detector.

In your answer, annotate FIGURE 1, on pages 5 and 6, to show how a set-square can be used in this procedure. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
||||||||||||| [Turn over]

Before the source was brought into the room, a background count C_{b} was recorded.
$C_{\mathrm{b}}=630$ counts in 15 minutes

With the source and detector in the positions shown in FIGURE 1, on pages 5 and 6, $\boldsymbol{d}=530 \mathrm{~mm}$.

Separate counts C_{1}, C_{2} and C_{3} are recorded.
$C_{1}=90$ counts in 100 s
$C_{2}=117$ counts in 100 s
$C_{3}=102$ counts in 100 s
$\boldsymbol{R}_{\mathbf{C}}$ is the mean count rate corrected for background radiation.

In the space on the opposite page, show that when $d=530 \mathrm{~mm}, R_{\mathrm{C}}$ is about $0.3 \mathrm{~s}^{-1}$.
[2 marks]

[Turn over]

The apparatus is adjusted so that $d=380 \mathrm{~mm}$.
Counts are made that show $R_{\mathrm{C}}=0.76 \mathrm{~s}^{\mathbf{- 1}}$.
The student predicts that:
$R_{\mathrm{C}}=\frac{\boldsymbol{k}}{d^{2}}$
where k is a constant.
Explain whether the values of $\boldsymbol{R}_{\mathrm{C}}$ in Questions 01.2 and 01.3 support the student's prediction. [2 marks]

11

[Turn over]

Describe a safe procedure to reduce d. Give a reason for your procedure. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

The student determines $\boldsymbol{R}_{\mathbf{C}}$ for further values of d.

The values of d change by the same amount Δd between each measurement.

FIGURE 2, on the opposite page, shows these data.

FIGURE 2
$\log \left(\boldsymbol{R}_{\mathrm{C}} / \mathbf{s}^{-1}\right)$

REPEAT OF FIGURE 2

$\log \left(R_{\mathrm{C}} / \mathbf{s}^{-1}\right)$

011.5

Determine Δd. [2 marks]

$\Delta d=$
[Turn over]

REPEAT OF FIGURE 2

$\log \left(R_{\mathbf{C}} / \mathbf{s}^{-1}\right)$

011.6

Explain how the student could confirm whether FIGURE 2 supports the prediction:
$R_{\mathrm{C}}=\frac{k}{d^{2}}$
No calculation is required. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
|||||||||||||| [Turn over]

20

When a gamma photon is detected by the detector, another photon cannot be detected for a time t_{d} called the dead time.

It can be shown that:
$t_{\mathrm{d}}=\frac{R_{2}-R_{1}}{R_{1} \times R_{2}}$
where $\quad R_{1}$ is the measured count rate
R_{2} is the count rate when R_{1} is corrected for dead time error.

\section*{| 0 | 1 | 7 |
| :--- | :--- | :--- |}

The distance between the source and the detector is adjusted so that d is very small and R_{1} is $\mathbf{1 0 0 ~ s}{ }^{\mathbf{- 1}}$.

On average, two of the gamma photons that enter the detector every second are not detected.

Calculate $\boldsymbol{t}_{\mathrm{d}}$ for this detector. [1 mark]

$$
t_{\mathrm{d}}=
$$

22

\section*{| 0 | 1. |
| :--- | :--- | :--- |}

A student says that if $\mathbf{1 0 0}$ gamma photons enter a detector in one second and t_{d} is 0.01 s , all the photons should be detected.

Explain, with reference to the nature of radioactive decay, why this idea is NOT correct. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\section*{| | 2 |
| :--- | :--- | :--- |}

A light-emitting diode (LED) emits light over a narrow range of wavelengths. These wavelengths are distributed about a peak wavelength λ_{p}.

Two LEDs L_{G} and L_{R} are adjusted to give the same maximum light intensity. L_{G} emits green light and L_{R} emits red light.

FIGURE 3, on page 24, shows how the light output of the LEDs varies with the wavelength λ.
[Turn over]

24

FIGURE 3

light intensity / arbitrary units

25

0.2 . 1

Light from L_{R} is incident normally on a plane diffraction grating.

The fifth-order maximum for light of wavelength λ_{p} occurs at a diffraction angle of 76.3°.

Determine N, the number of lines per metre on the grating. [3 marks]

26

\section*{| 0 | 2 |
| :--- | :--- |}

Suggest ONE possible disadvantage of using the fifth-order maximum to determine N. [1 mark]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

27

BLANK PAGE

[Turn over]

28

\section*{| 0 | 2 |
| :--- | :--- |}

FIGURE 4, on the opposite page, shows part of the current-voltage characteristics for L_{R} and L_{G}.

When the linear part of the characteristic is extrapolated, the point at which it meets the horizontal axis gives the activation voltage V_{A} for the LED.
V_{A} for L_{G} is 2.00 V .
Determine, using FIGURE 4, V_{A} for L_{R}. [2 marks]

$$
V_{A} \text { for } L_{R}=
$$

29

FIGURE 4

$I / \mathbf{m A}$

|l|l|l|l|ll| [Turn over]

REPEAT OF FIGURE 4
I/mA

\section*{| 0 | 2. |
| :--- | :--- |}

It can be shown that:

$$
V_{\mathrm{A}}=\frac{h c}{e \lambda_{\mathrm{p}}}
$$

where $\boldsymbol{h}=$ the Planck constant.
Deduce a value for the Planck constant based on the data given about the LEDs. [2 marks]

0	2

FIGURE 5 shows a circuit with L_{R} connected to a resistor of resistance R.

FIGURE 5

The power supply has emf 6.10 V and negligible internal resistance. The current in L_{R} must not exceed 21.0 mA .

Deduce the minimum value of R. [2 marks]

\section*{| 0 | 3 |
| :--- | :--- |}

An analogue voltmeter has a resistance that is much less than that of a modern digital voltmeter.

Analogue meters can be damaged if the full-scale reading is exceeded.

FIGURE 6 shows a dual-range analogue voltmeter with a zero error.

FIGURE 6

The voltmeter is set to the MORE SENSITIVE range and then used in a circuit.

What is the potential difference (pd) between the terminals of the voltmeter when a full-scale reading is indicated?

Tick (\checkmark) ONE box. [1 mark]

2.7 V

3.3 V

13.5 V

16.5 V
[Turn over]

\section*{| 0 | 3 |
| :--- | :--- |}

Explain the use of the mirror when reading the meter. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

A student corrects the zero error on the meter and then assembles the circuit shown in FIGURE 7.

The capacitance of the capacitor C is not known.

FIGURE 7
flying lead

The output pd of the power supply is set to zero.

The student connects the flying lead to socket X and adjusts the output pd until the voltmeter reading is full scale (15 V).

She disconnects the flying lead from socket X so that C discharges through the voltmeter.

She measures the time $T_{1 / 2}$ for the voltmeter reading V to fall from 10 V to 5 V .

She repeats this process several times.

TABLE 1 shows the student's results, none of which is anomalous.

TABLE 1

$T_{1 / 2} / \mathrm{s}$	12.00	11.94	12.06	12.04	12.16

[Turn over]

40

BLANK PAGE

\section*{| 0 | 3 | 3 |
| :--- | :--- | :--- |}

Determine the percentage uncertainty in $T_{1 / 2}$. [2 marks]
percentage uncertainty = $\%$

[Turn over]

Show that the time constant for the discharge circuit is about 17 s . [1 mark]

43

BLANK PAGE

[Turn over]

The student thinks that the time constant of the circuit in FIGURE 7, on page 38, is directly proportional to the range of the meter.

To test her theory, she repeats the experiment with the voltmeter set to the 3 V range.

She expects $T_{1 / 2}$ to be about 2.5 s .

Explain:

- what the student should do, before connecting capacitor C to the 0 V and 3 V sockets, to avoid exceeding the full-scale reading on the voltmeter
- how she should develop her procedure to get an accurate result for the time constant

45

- how she should use her result to check whether her theory is correct.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

46
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

47

BLANK PAGE

[Turn over]

The student wants to find the resistance of the voltmeter when it is set to the 15 V range.

She replaces C with an $820 \mu \mathrm{~F}$ capacitor and charges it to 15 V .

She discharges the capacitor through the voltmeter, starting a stopwatch when V is 14 V .

She records the stopwatch reading t at other values of V as the capacitor discharges.

TABLE 2 shows her results.
TABLE 2

V / V	14	11	8	6	4	3	2
t / s	0.0	3.1	7.2	11.0	16.2	19.9	25.2

49

0 3. 6

Suggest TWO reasons why the student selected the values of V shown in TABLE 2. Explain each of your answers. [4 marks]
1
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2
[Turn over]

50

BLANK PAGE

[Turn over]

52

FIGURE 8 shows a graph of the experimental data.

FIGURE 8

$\ln (V / V)$

Show, using FIGURE 8, that the resistance of the voltmeter is about $16 \mathrm{k} \Omega$. [3 marks]

54
REPEAT OF FIGURE 8
$\ln (V / V)$

55

\section*{| | 3 |
| :--- | :--- | :--- |}

Determine the current in the voltmeter at $t=10 \mathrm{~s}$. [2 marks]

56

	Additional page, if required. Write the question numbers in the left-hand margin.

57

\qquad

58

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

