AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level COMPUTER SCIENCE

Paper 2

Time allowed: 2 hours 30 minutes

Materials

For this paper you must have:

- a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- In some questions you are required to indicate your answer by completely shading a lozenge alongside the appropriate answer as shown.
- If you want to change your answer you must cross out your original answer as shown.
- If you wish to return to an answer previously crossed out, ring the answer

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

The image takes up 400 kB of storage space when represented as a bitmap, excluding metadata.

Calculate the maximum number of different colours that could appear in the image.
You should show your working.
\qquad
\qquad
\qquad

Answer \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ The same image can also be represented using vector graphics.

The vector graphics representation of the image takes up 2 kB of storage space.
Explain why the amount of storage space taken up by the vector graphics representation of the image is significantly smaller than the space taken up by the bitmap representation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ One advantage of vector graphics compared to bitmap graphics is that fewer bytes |
| :--- | :--- | :--- | :--- | are used to represent an image.

State two other advantages of vector graphics compared with bitmap graphics.

Advantage 1 \qquad
\qquad
\qquad
Advantage 2 \qquad
\qquad

Turn over for the next question

| 0 | 2 |
| :--- | :--- | system might be chosen in preference to a thick-client system.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[3 marks]

| 0 | 3 | A data communications system can transmit four different signals. Each different |
| :--- | :--- | :--- | signal represents two bits of data.

| 0 | 3 | 1 |
| :--- | :--- | :--- | system.

\qquad
\qquad
\qquad

0	3	2
	Describe the relationship between the bit rate of the system and the bandwidth of the	

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{3}$	The system uses serial transmission.

Describe the difference between the operation of serial and parallel transmission.
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Figure 1 shows a circuit with inputs $\mathbf{X 0}$ to $\mathbf{X 2}$ and outputs Q0 to Q7
Figure 1

$\begin{array}{llll}0 & 4 & 1 & \text { Write a Boolean expression to represent the output } \mathbf{Q 1} \text { of the circuit in Figure } 1 .\end{array}$
\qquad

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{2}$ Complete the truth table below for the circuit in Figure 1.

INPUTS				OUTPUTS								
X2	X1	X0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7		
0	0	0										
0	0	1										
0	1	0										
0	1	1										
1	0	0										
1	0	1										
1	1	0										
1	1	1										

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$ Explain the purpose of the circuit in Figure 1.

Considering the inputs and outputs of the circuit and consulting your answers to Question 04.1 and Question 04.2 may help you to do this.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

Figure 1 is repeated below to help you answer Question 04.4.
Figure 1 (repeated)

| 0 | 4 | 4 |
| :--- | :--- | :--- | outputs of the logic circuit in Figure 1, for the inputs X0, X1 and X2.

Figure 2

Which output (Q0 to Q7) from Figure $\mathbf{1}$ is the output \mathbf{S} from the circuit in Figure 2 equivalent to?

| 0 | 5 |
| :--- | :--- | A sports centre uses a relational database to store information about its facilities (such as the swimming pool) and the bookings that have been made to use them.

Figure 3 shows the structure of the relations in the database.
Figure 3

Facility(FacilityID, Description, MaxPeople, PricePerHour)
FacilityForSport(Sport, FacilityID)
Booking(FacilityID, BookingDate, StartTime, EndTime, CustomerID)
Customer(CustomerID, Forename, Surname, EmailAddress)

- The Facility relation stores the different facilities available at the sports centre. Each one is identified by a unique number and has a brief description. For example, the facility with FacilityID 1 has the description 'Outdoor Pitch A'. PricePerHour is the price of hiring a facility for 1 hour. For example, the facility with FacilityID 1 has a price per hour of $£ 17.50$.
- The FacilityForSport relation identifies which facilities are suitable for which sports. For example, the facility with FacilityID 1 is suitable for football, rugby and hockey and would therefore require three separate records in this relation.
- The Booking relation stores the bookings that have been made. Bookings must start and end either on the hour, at quarter past, half past or quarter to the hour. A customer can make bookings for more than one facility for the same time. For example, a badminton club secretary might book both of the indoor sports halls for the same time. However, each facility can only be booked by one customer at any one time.
- The Customer relation stores the details of customers who have made bookings.
$\begin{array}{lllll}0 & 5 & 1 & \text { The entity identifier (primary key) for the Booking relation is a composite entity }\end{array}$ identifier, consisting of these three attributes:

> FacilityID, BookingDate, StartTime

An alternative entity identifier could have been chosen, composed of different attributes.

Shade one lozenge to indicate which of the following groups of attributes would form a valid alternative entity identifier for the Booking relation.

A BookingDate, StartTime, EndTime

B FacilityID, BookingDate, EndTime

C FacilityID, StartTime, CustomerID

D FacilityID, BookingDate, EndTime, Sport

| 0 | $\mathbf{5} .2$ | $\mathbf{2}$ A different design was originally proposed for the database. This design did not have |
| :--- | :--- | :--- | the Customer relation and had the following design for the Booking relation:

Booking(FacilityID, BookingDate, StartTime, EndTime, Forename, Surname, EmailAddress)

Explain why this alternative design would have been rejected in favour of the design in Figure 3.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 3 | Complete the following SQL statement to create the Facility relation specified in |
| :--- | :--- | :--- | :--- | Figure 3, including the primary key.

CREATE TABLE Facility (\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Figure 3, including the primary key.

Figure 3 is repeated below to help you answer Question 05.4 without having to turn back in the question paper.

Figure 3 (repeated)

Facility(FacilityID, Description, MaxPeople, PricePerHour)
FacilityForSport(Sport, FacilityID)
Booking(FacilityID, BookingDate, StartTime, EndTime, CustomerID)
Customer(CustomerID, Forename, Surname, EmailAddress)

| $\mathbf{0}$ | $\mathbf{5} .4$ | A customer wants to book a facility that is suitable for playing basketball on the |
| :--- | :--- | :--- | 15/06/2021 between 14:15 and 16:15

As part of the booking process, a query is needed to list all the existing bookings that would overlap with the new booking.

Write a query that will list all the bookings for facilities that are suitable for playing basketball and which would overlap with the booking that the customer wants to make.

For each booking which would overlap with the new booking only the FacilityID, StartTime and EndTime fields should be listed.
\qquad

Turn over for the next question

This table is included so that you can answer Question 06.1 on page 17.
Table 1 - Standard AQA assembly language instruction set

LDR Rd, <memory ref>	Load the value stored in the memory location specified by <memory ref> into register d.
STR Rd, <memory ref>	Store the value that is in register d into the memory location specified by <memory ref>.
ADD Rd, Rn, <operand2>	Add the value specified in <operand2> to the value in register n and store the result in register d .
SUB Rd, Rn, <operand2>	Subtract the value specified by <operand2> from the value in register n and store the result in register d .
MOV Rd, <operand2>	Copy the value specified by <operand2> into register d.
CMP Rn, <operand2>	Compare the value stored in register n with the value specified by <operand2>.
B <label>	Always branch to the instruction at position <label> in the program.
B <condition> <label>	Branch to the instruction at position <label> if the last comparison met the criterion specified by <condition>. Possible values for <condition> and their meanings are: EQ : equal to NE : not equal to GT: greater than LT: less than
AND Rd, Rn, <operand2>	Perform a bitwise logical AND operation between the value in register n and the value specified by <operand2> and store the result in register d .
ORR Rd, Rn, <operand2>	Perform a bitwise logical OR operation between the value in register n and the value specified by <operand $2>$ and store the result in register d .
EOR Rd, Rn, <operand2>	Perform a bitwise logical XOR (exclusive or) operation between the value in register n and the value specified by <operand2> and store the result in register d.
MVN Rd, <operand2>	Perform a bitwise logical NOT operation on the value specified by <operand2> and store the result in register d.
LSL Rd, Rn, <operand2>	Logically shift left the value stored in register n by the number of bits specified by <operand2> and store the result in register d .
LSR Rd, Rn, <operand2>	Logically shift right the value stored in register n by the number of bits specified by <operand2> and store the result in register d.
HALT	Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is a \# or an R :

- \# - use the decimal value specified after the \#, eg \#25 means use the decimal value 25
- Rm - use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0-12

| 0 | 6 |
| :--- | :--- | AQA assembly language instruction set. The instruction set is explained in Table 1 on page 15.

Figure 4

```
    CMP R2, #0
    BEQ exit
    MOV R0, #0
    MOV R3, #1
moveleft:
    LSL R2, R2, #1
    LSL R3, R3, #1
    CMP R2, R1
    BLT moveleft
    BEQ mainloop
    LSR R2, R2, #1
    LSR R3, R3, #1
mainloop:
    CMP R1, R2
    BLT skip
    ADD R0, R0, R3
    SUB R1, R1, R2
skip:
    AND R4, R3, #1
    CMP R4, #1
    BEQ skipshiftR2
    LSR R2, R2, #1
skipshiftR2:
    LSR R3, R3, #1
    CMP R3, #0
    BNE mainloop
exit:
    HALT
```

The program takes its input values from registers R1 and R2 and stores its output in registers R0 and R1

0	6	1
1		

Figure 4 when the initial values in registers R1 and R2 are 34 and 6
Each register can hold a 16-bit value.
You may find it easier to understand the operation of the program if you write the contents of the registers out in both binary and decimal.

You may not need to use all the rows in the table.
[6 marks]

R0	R1	R2	R3	R4
	$100010(34)$	$110(6)$		

Question 06 continues on the next page

| 0 | 6 | .2 |
| :--- | :--- | :--- | The initial values for the program (its inputs) are stored in R1 and R2 and the final values stored in R0 and R1 are its outputs.

By considering the inputs and the outputs in your trace table for Question 06.1, describe the purpose of the program.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{1}$ Explain why a laser printer with a built-in wireless network adapter is likely to be a |
| :--- | :--- | :--- | suitable choice of printer for a small office.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ Describe the principles of operation of a laser printer. |
| :--- | :--- | :--- | :--- |

\qquad

Turn over for the next question

| 0 | 8 | Use binary addition in 8-bit two's complement to perform the subtraction: |
| :--- | :--- | :--- | 18-72

You must show both your working and your final answer in binary.
\qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question

0	9
Big Data is an important application area for modern computer science.	

- Describe what Big Data is, using examples to illustrate your description.
- Explain some of the challenges that Big Data brings with it and the approaches that can be taken to overcome these, in relation to programming and hardware.
- Consider some of the ethical and legal issues that might arise in applications that store data, particularly data about people.
\qquad

| $\mathbf{1}$ | $\mathbf{0} \quad$ A particular computer uses a normalised floating point representation with an 8-bit |
| :--- | :--- | mantissa and a 4-bit exponent, both stored using two's complement.

| 1 | $\mathbf{0} .1$ | 1 |
| :--- | :--- | :--- | are labelled with the letters A to D. Three of the bit patterns are valid normalised floating point numbers and one is not.

Figure 5
A

B

Mantissa
C

D | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mantissa | | | | | | | |

Exponent

Complete Table 2 below. In the Correct letter (A-D) column write the appropriate letter from \mathbf{A} to \mathbf{D} to indicate which bit pattern in Figure $\mathbf{5}$ is an example of the type of value described in the Value description column.

Do not use the same letter more than once.

Table 2

Value description	Correct letter (A-D)
A negative value that is valid in the representation.	
The largest positive value that can be represented in the system.	
A value that is not valid in the representation because it is not normalised.	

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{2}$ Figure 6 shows a floating point representation of a number:

Figure 6

0	1	1	1	0	1	0	0
Mantissa							

Exponent

Calculate the decimal equivalent of the number.
You should show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

In this floating point system, the closest possible representation of the decimal number 104.7 is shown in Figure 7.

Figure 7

By converting this number back to decimal it can be seen that the actual value stored is 105
10.3 Calculate the absolute error that has occurred when representing 104.7 in Figure 7. [1 mark]
\qquad
\qquad
Answer \qquad

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{4}$ Calculate the relative error that has occurred when representing 104.7 in Figure 7.

Express your answer as a percentage to two decimal places.
[1 mark]
\qquad
\qquad
Answer
$\begin{array}{lll}1 & 0 & 5 \\ 5\end{array}$ error than the absolute error.
\qquad
\qquad
\qquad

Figure 8 shows a computer network. The devices connected to the network are identified using IPv4 addresses. When assigning IP addresses, 20 bits have been allocated to the Network IDs (also known as Subnet IDs or subnet addresses) and 12 bits have been allocated to the Host IDs.

Figure 8

| 1 | 1 | 1 |
| :--- | :--- | :--- | State suitable IP addresses for:

The Router 1 port labelled (A)

The Router 1 port labelled B
B
The computer labelled C

Question 11 continues on the next page

| $\mathbf{1}$ | $\mathbf{1} .2$ | 2 |
| :--- | :--- | :--- | that has been assigned to the devices connected to the network in Figure 8.

A 255.255.0.0
B 255.255.15.0
C 255.255.240.0
D 255.255.255.0

\square
\square
\square
$\begin{array}{lll}1 & 1 & \mathbf{1} \text {. } 3 \text { The devices on the network in Figure } 8 \text { use IPv4. }\end{array}$
State one reason why IPv6 has been introduced to replace IPv4.
\qquad
\qquad
\qquad

$\mathbf{1}$	$\mathbf{1}$.	$\mathbf{4}$	State the name of the physical topology used in subnet 192.168.64.0 in Figure 8.

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{5}$ Laptop computers and other devices can connect to the network via the wireless |
| :--- | :--- | :--- | access point. The wireless connection uses the CSMA/CA protocol with Request to Send/Clear to Send (RTS/CTS).

A laptop connected to the wireless access point has data to send to another computer.

Explain how the CSMA/CA protocol with RTS/CTS will be used during this transmission.
\qquad

$\mathbf{1}$	$\mathbf{2}$ Describe how MIDI is used to represent digital music.

\qquad
\qquad
\qquad
\qquad
\qquad

1	3	1
1	Describe the difference between application software and system software.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 1 | 3 | 2 |
| :--- | :--- | :--- | Utilities are a type of system software.

Describe what utilities are and include an example of a utility in your answer.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 1 | 4 | 1 |
| :--- | :--- | :--- | Shade one lozenge to indicate which of these statements about a computer that uses the stored program concept is false.

A Instructions are fetched and executed in sequence.

B The computer can only be used with one program.

C The data is stored in the main memory.

D The program is stored in the main memory. \square

Describe the role of the control unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 14 continues on the next page
 increase the amount of cache memory.

Describe:

- what cache memory is
- what cache memory is used for
- how increasing the amount of cache memory can improve the performance of a processor.
\qquad

END OF QUESTIONS

