Level 2 Certificate
 FURTHER MATHEMATICS
 8365/2

Paper 2 Calculator
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M

M dep

A

B

B dep
ft

SC
oe
Or equivalent. Accept answers that are equivalent.
eg accept 0.5 as well as $\frac{1}{2}$
[a, b]
3.14...

Accept answers which begin 3.14 eg $3.14,3.142,3.1416$

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
1	$10 x-5$ or $44-4 x$	M1	may be seen in a grid
	$10 x-5+44-4 x$ or $6 x+39$ or $3 \times(2 x+13)$	M1dep	oe all terms correct in a single expression
	$3(2 x+13)$	A1	
	Additional Guidance		

Q	Answer	Mark	Comments	
2(a)	$5 m \times(1-0.4)$ or $5 m \times 0.6$ or $3 m$	M1	oe eg $5 m-0.4 \times 5 m$ or $5 m-2 m$ may be seen in an equation eg $3 m=m+1$	
	$\frac{1}{2}$ or 0.5	A1		
	Additional Guidance			
	$2 m$ only			M0
	$2 m=1$			M1

Q	Answer	Mark	Comments
2(b)	$2 w-10=18^{3}$ or $2 w-10=5832$ or $\frac{18^{3}+10}{2}$	M1	oe eg $2 w=5842$
	2921	A1	
	Additional Guidance		

Q	Answer	Mark		
3	$12 d e \times 2 d$ or $24 d^{2} e$ or $\frac{1}{2} \times 8 e^{2} \times 9 d$ or $36 d e^{2}$	M1	oe eg 2	
	$24 d=36 e$	M1dep	oe equ eg $2 d=$	liminated $\frac{12}{18}$
	$\frac{3}{2}$ or $1 \frac{1}{2}$ or 1.5	A1		
	Additional Guidance			
	Equivalent fraction to $\frac{3}{2}$ or $1 \frac{1}{2}$ with no incorrect working			M2A0

Q	Answer	Mark	Comments	
4	$\pi \times 100(\div 4) \text { or } 100 \pi(\div 4)$ or 25π or $\pi \times 36(\div 4)$ or $36 \pi(\div 4)$ or 9π	M1	oe	
	$\pi \times 100 \div 4-\pi \times 36 \div 4$	M1dep	$\text { oe eg } \frac{100 \pi-36 \pi}{4} \text { or } \frac{64 \pi}{4}$	
	16π	A1	SC2 2176π	
	Additional Guidance			
	Use of circumference instead of are	roughout		MOMOAO
	Allow substitution of $\pi=[3.14,3.1$	for M ma		
	16π in working with eg 50.3 on ans	line		M2A0
	SC2 is for using radii of 100 and 36			
	Omission of π in working must be r	vered		

Q	Answer	Mark	Comments
7(a)	$a^{4 m} \text { or } a^{10 m}$ or $4 m=10 m$	M1	oe eg $a^{4 \times m}$
	0	A1	
	Additional Guidance		
	Allow a to be replaced by any value greater than 1		

Q	Answer	Mark	Comments	
7(b)	$w^{13} x^{7} \div w^{3} x^{2}$ or $w^{10} x^{5}$ or $x^{2} y^{5}=w^{10} x^{7} \text { or } y^{5}=\frac{w^{10} x^{7}}{x^{2}}$ or $w^{3} y^{5}=w^{13} x^{5} \text { or } y^{5}=\frac{w^{13} x^{5}}{w^{3}}$	M1	oe eg $\frac{w^{13} x^{7}}{w^{3} x^{2}}$ may be embedded eg $\sqrt[5]{w^{10} x^{5}}$	
	$w^{2} x^{(1)}$	A1	oe eg $x w^{2}$	
	Additional Guidance			
	$y=w^{10} x^{5}$			M1A0

Q	Answer	Mark	Comments	
9(a)	$\frac{b+a}{a b}$		B1	
	Additional Guidance			

Q	Answer	Mark	Comments
9(b)	$\frac{c^{3}}{6 c+1}$	B3	B2 $c^{3}(6 c-1)$ and $(6 c+1)(6 c-1)$ B1 $c^{3}(6 c-1)$ or $(6 c+1)(6 c-1)$
	Additional Guidance		
	$\frac{c^{3}}{6 c+1}$ followed by incorrect further work	B2	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{4}{3} \times \pi \times \frac{27 k^{3}}{8}$ or $\frac{9 \pi k^{3}}{2}$	M1	oe	
	$\begin{aligned} & k^{3}=972 \times 2 \div 9 \\ & \text { or } k^{3}=216 \\ & \text { or } \sqrt[3]{216} \end{aligned}$	M1dep	oe eg $k^{3}=972 \pi \times 2 \div 9 \pi$ must have k^{3} seen or implied	
	6	A1		
10	Alternative method 2			
	$972 \pi \div \frac{4}{3} \pi$ or 729 or $972 \pi \div \frac{4}{3} \pi$ or 729 or $\sqrt[3]{729}$ or 9	M1	$\text { oe eg }\left(r^{3}=\right) 972 \div \frac{4}{3}$	
	$\begin{aligned} & \frac{3 k}{2}=\sqrt[3]{\text { their } 729} \\ & \text { or } \frac{3 k}{2}=9 \\ & \text { or } 9 \times 2 \div 3 \end{aligned}$	M1dep	oe must have $\frac{3 k}{2}$ seen or implied	
	6	A1		
	Additional Guidance			
	Alt $1 \frac{4}{3} \times \frac{27 k^{3}}{8}$ is M0 unless recovered			
	Alt $2972 \pi \div \frac{4}{3}$ is M0 unless recovered			
	Alt $1 \frac{4}{3} \times \pi \times\left(\frac{3 k}{2}\right)^{3}$ not subsequently simplified correctly			M0

Q	Answer	Mark	Comments	
11	3 terms from $20 x^{2}-5 x y^{2} \quad(+) 12 x y^{2} \quad-3 y^{4}$	M1	may be seen in a grid	
	$20 x^{2}-5 x y^{2}+12 x y^{2}-3 y^{4}$	A1	four correct terms in any order may be seen in a grid implied by correct answer	
	$20 x^{2}+7 x y^{2}-3 y^{4}$	A1	terms may be in any order	
	Additional Guidance			
	Terms seen in a grid must have the correct signs			
	Terms must be fully processed eg do not allow $4 x 3 y^{2}$ unless recovered			
	$x y^{2}$ may be $y^{2} x$ throughout			
	$20 x^{2}+7 x y^{2}-3 y^{4}$ followed by incorrect further work			M1A1A0

Q	Answer	Mark	Comments	
13	$3 a x^{2}$ or $20 x$	M1	oe eg $3 \times a x^{3-1}$ or $2 \times 10 x^{2-1}$	
	$3 a \times 2^{2}+20 \times 2$ or $12 a+40$	M1	ft substitution of $x=2$ into their derivative must have attempted differentiation and have two terms with one involving a may be seen in a denominator	
	$\text { their }(12 a+40)=-1 \div-\frac{1}{4}$ or their $(12 a+40)=4$	M1dep	$\begin{aligned} & \text { oe eg }-\frac{1}{\text { their }(12 a+40)}=-\frac{1}{4} \\ & \text { dep on 2nd M1 } \end{aligned}$	
	-3	A1		
	Additional Guidance			
	Only substituting $x=2$ into y			Zero
	$\begin{aligned} & a x^{2}+10 x \\ & 4 a+20=4 \end{aligned}$			$\begin{gathered} \text { M0 } \\ \text { M1M1 } \end{gathered}$
	$\begin{aligned} & 3 x^{2}+20 x \\ & 12+20 \end{aligned}$			M1 MOMO

Q	Answer	Mark	Comments	
14(a)	Reflection in the x-axis or reflection in $y=0$	B1		
	Additional Guidance			
	Reflect(ed) in the x-axis			B1
	Do not allow if there is additional incorrect information eg1 Reflection in the x-axis about the origin eg2 Reflection in the x-axis and rotated			$\begin{aligned} & \text { B0 } \\ & \text { B0 } \end{aligned}$
	Reflection			B0

Q	Answer	Mark	Comments
	Alternative method 1		
	angle $A B O=x$	M1	may be seen on diagram implied by angle $A O B=180-2 x$
	angle $A C B=180-w$	M1	oe eg angle $A C B+w=180$ may be seen on diagram
	angle $A O B=2 \times(180-w)$ or angle $A O B=360-2 w$	M1dep	may be seen on diagram dep on 2nd M1 angle $A O B$ may be seen as $180-2 x$
	$x+x+2 \times(180-w)=180$	M1dep	oe eg $2(180-w)=180-2 x$ dep on M3
15	$w=x+90$ with M4 and all reasons given	A1	eg of reasons isosceles triangle and angles on a straight line and angle at centre and angle sum of triangle
	Alternative method 2		
	angle $A B O=x$	M1	may be seen on diagram implied by angle $A O B=180-2 x$
	angle $A O B=180-x-x$ or angle $A O B=180-2 x$	M1dep	oe eg $2 x+$ angle $A O B=180$ may be seen on diagram
	$\text { angle } A C B=\frac{1}{2} \times(180-x-x)$ or angle $A C B=90-x$	M1dep	oe eg angle $A C B=\frac{1}{2} \times(180-2 x)$ may be seen on diagram angle $A C B$ may be seen as $180-w$
	$\frac{1}{2} \times(180-x-x)+w=180$	M1dep	oe eg $w=180-(90-x)$
	$w=x+90$ with M4 and all reasons given	A1	eg of reasons isosceles triangle and angle sum of triangle and angle at centre and angles on a straight line

Mark scheme and Additional Guidance continues on the next two pages

Q	Answer	Mark	Comments
$\begin{gathered} 15 \\ \text { cont } \end{gathered}$	Alternative method 3 Draws tangent (eg $P Q$) at A		
	angle $Q A B=90-x$	M1	oe eg $x+$ angle $Q A B=90$ may be seen on diagram
	angle $A C B=180-w$	M1	oe eg angle $A C B+w=180$ may be seen on diagram
	angle $Q A B=$ angle $A C B$	M1	may be seen on diagram eg both angles labelled y
	$90-x=180-w$	M1dep	$\begin{aligned} & \text { oe eg } 90-x+w=180 \\ & \text { dep on M3 } \end{aligned}$
	$w=x+90$ with M4 and all reasons given	A1	eg of reasons radius perpendicular to tangent and angles on a straight line and alternate segment

Additional Guidance is on the next page

$\begin{gathered} 15 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Allow angle $B C D$ for w throughout	
	3rd M1 and 4th M1 may be seen in one line of working eg1 Alt 1 angle $A B O=x$ angle $A C B=180-w$ $180-2 x=2 \times(180-w)$ eg2 Alt 2 angle $A B O=x$ angle $A O B=180-2 x$ $180-w=\frac{1}{2} \times(180-2 x)$	M1 M1 M1M1 M1 M1 M1M1
	Condone slips in notation only if angles are marked in correct position on the diagram eg1 Do not allow angle $C=180-w$ unless marked in correct position on the diagram eg2 Allow $A C B$ for angle $A C B$	
	For reasons, allow if the intention is clear eg1 Allow isos triangle for isosceles triangle eg2 Allow angles in a triangle for angle sum of a triangle eg3 Allow angles on a line for angles on a straight line	
	For reasons do not allow incorrect statements eg do not allow angles in a triangle add to 360	

Mark scheme and Additional Guidance continue on the next page

$\begin{gathered} 17 \\ \text { cont } \end{gathered}$	Alternative method 3 Works out $M D$ and $M B$ and uses $\sin M B D$			
	$\begin{aligned} & \tan 28=\frac{G N}{32} \text { or } 32 \tan 28 \\ & \text { or }[17,17.015] \end{aligned}$	M1	$\text { oe eg } \frac{32}{\tan (90-28)}$ working out $G N$ or $H M$	
	$32-32 \tan 28$ or [14.985, 15]	M1dep	oe working out $N C$ or $M D$	
	$\begin{aligned} & \sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}} \\ & \text { or }[47.67,47.7] \end{aligned}$	M1dep	oe working out $M B$	
	$\begin{aligned} & \sin M B D= \\ & \frac{\text { their }[14.985,15]}{\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}} \end{aligned}$	M1dep	oe$\text { eg } \sin ^{-1} \frac{\text { their }[14.985,15]}{\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}}$	
	[18.3, 18,4]	A1		
	Additional Guidance			
	1st M1 GN may be seen as a letter, eg x, but do not award if subsequently used as the length of an incorrect side (eg $M M$)			
	4th M1 MBD may be seen as a letter, eg y, but do not award if subsequently used as the size of an incorrect angle (eg $D M B$)			
	Alt 1 or Alt $232 \sqrt{1^{2}+1^{2}}$			3rd M1
	Alt $1 \tan M B D=\frac{32(1-\tan 28)}{32 \sqrt{2}}$ or $\tan M B D=\frac{(1-\tan 28)}{\sqrt{2}}$			M4

Q	Answer	Mark	Comments
18	Alternative method 1		
	12 or $-3 x^{-2}$	M1	$\text { oe eg } 12 x^{0} \text { or } 3 x-1 x^{-1-1} \text { or }-\frac{3}{x^{2}}$
	12 and $-3 x^{-2}$	M1dep	oe eg $12-\frac{3}{x^{2}}$ or $12 x^{0}$ and $3 \times-1 x^{-1-1}$
	$12-3 x^{-2}=0 \text { and } x=0.5$ or $12-3 \times 0.5^{-2}=0$	M1dep	oe $=0$ must be seen condone inclusion of $x=-0.5$
	$6 x^{-3}$	M1	oe eg $-2 \times-3 x^{-2-1}$ ft differentiation of their first derivative if it involves a negative power of x
	M4 and $6 \times 0.5^{-3}(=48)$ which is positive (so minimum)	A1	oe do not allow if $\frac{6}{0.5^{3}}$ is evaluated incorrectly

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
	12 or $-3 x^{-2}$	M1	oe eg $12 x^{0}$ or $3 \times-1 x^{-1-1}$	
	12 and $-3 x^{-2}$	M1dep	$\text { oe eg } 12-\frac{3}{x^{2}}$ or $12 x^{0}$ and $3 \times-1 x^{-1-1}$	
	$12-3 x^{-2}=0 \text { and } x=0.5$ or $12-3 \times 0.5^{-2}=0$	M1dep	oe = 0 must be seen condone inclusion of $x=-0.5$	
	Substitutes one x value in range $(0,0.5)$ into $12-3 x^{-2}$ and substitutes one x value >0.5 into $12-3 x^{-2}$	M1	$\text { eg } 12-3 \times 0.25^{-2}$ and $12-3 \times 1^{-2}$ ft substitution into their first derivative if it involves a negative power of x	
$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	M4 and two correct evaluations (so minimum) or M4 and two correct signs shown with no incorrect evaluations (so minimum)	A1	eg M4 and $12-3 \times 0.25^{-2}=-36$ and $12-3 \times 1^{-2}=9$ (so minimum) or M4 and $12-3 \times 0.25^{-2}$ is negative and $12-3 \times 1^{-2}$ is positive (so minimum)	
	Additional Guidance			
	Alt 1$\begin{aligned} & 12+3 x^{-2}=0 \\ & -6 x^{-3} \end{aligned}$			M1M0M0 M1A0
	Alt 2 $\begin{aligned} & 12-3 x^{-2} \\ & 6 x^{-3} \end{aligned}$ $12-3 \times 0.25^{-2}=-36 \quad 12-3 \times 1^{-2}=9$ so minimum (A1 only possible after awarding M4)			M1M1M0 M1 A0
	Ignore any testing of the stationary point at $x=-0.5$			

Q	Answer	Mark	Comments	
19(a)	x^{4}		B1	
	Additional Guidance			

Q	Answer	Mark	Comments
19(b)	$2 x^{2}+10$ or $2\left(x^{2}+5\right)$	$\mathrm{B} 1 \mathrm{k}(x)=2 x$ or $(\mathrm{k}(x))^{2}=4 x^{2}$ or $\mathrm{h}(2 x)=4 x^{2}+5$ or $(2 x)^{2}+5$	
	Additional Guidance		
	$2\left(x^{2}+5\right)$ in working with answer $2 x^{2}+5$		

Q	Answer	Mark	Comments
20	Alternative method 1 Uses a common denominator of $\sin x$		
	$\begin{aligned} & \frac{2 \sin x+\cos x}{\frac{\sin x}{\cos x}}-\frac{1}{\sin x} \\ & \text { or } \frac{\cos x(2 \sin x+\cos x)}{\sin x}-\frac{1}{\sin x} \end{aligned}$	M1	implied by 2nd M1 condone omission of $-\frac{1}{\sin x}$
	$\begin{aligned} & \frac{2 \sin x \cos x+\cos ^{2} x}{\sin x}-\frac{1}{\sin x} \\ & \text { or } 2 \cos x+\frac{\cos ^{2} x}{\sin x}-\frac{1}{\sin x} \end{aligned}$	M1dep	$\text { condone omission of }-\frac{1}{\sin x}$
	$\frac{2 \sin x \cos x+\cos ^{2} x-\cos ^{2} x-\sin ^{2} x}{\sin x}$ or $\frac{2 \sin x \cos x+1-\sin ^{2} x-1}{\sin x}$ or $\frac{2 \sin x \cos x-\sin ^{2} x}{\sin x}$ or $2 \cos x-\frac{\sin ^{2} x}{\sin x}$	M1dep	
	$2 \cos x-\sin x$ with M3	A1	

Mark scheme and Additional Guidance continues on the next two pages

$\begin{gathered} 20 \\ \text { cont } \end{gathered}$	Alternative method 2 Uses a common denominator of $\tan x \sin x$		
	$\begin{aligned} & \frac{\sin x(2 \sin x+\cos x)-\tan x}{\tan x \sin x} \\ & \text { or } \\ & \frac{2 \sin ^{2} x+\cos x \sin x-\tan x}{\tan x \sin x} \end{aligned}$	M1	$\tan x$ may be seen as $\frac{\sin x}{\cos x}$
	$\frac{2 \sin ^{2} x \cos x+\cos ^{2} x \sin x-\sin x}{\sin ^{2} x}$	M1dep	
	$\begin{aligned} & \frac{2 \sin x \cos x+\cos ^{2} x-\cos ^{2} x-\sin ^{2} x}{\sin x} \\ & \text { or } \\ & \frac{2 \sin x \cos x+1-\sin ^{2} x-1}{\sin x} \\ & \text { or } \\ & \frac{2 \sin x \cos x-\sin ^{2} x}{\sin x} \end{aligned}$	M1dep	allow the fractions with denominator $\sin ^{2} x$ $\text { eg } \frac{2 \sin ^{2} x \cos x+\sin x-\sin ^{3} x-\sin x}{\sin ^{2} x}$
	$2 \cos x-\sin x$ with M3	A1	

Additional Guidance is on the next page

Q	Answer	Mark	Comments
	Alternative method 1		
	$3\left(x^{2}+a x+a x+a^{2}\right) \ldots$ or $3\left(x^{2}+2 a x+a^{2}\right) \ldots$ or $3\left(x+\frac{b}{3}\right)^{2} \ldots$ or $2 b=6 a$ or $8 a=3 a^{2}+b+2$	M1	oe eg $3 x^{2}+6 a x+3 a^{2} \ldots$ or $\frac{b}{3}=a$ or $b+2=-3\left(\frac{b}{3}\right)^{2}+8 a$
21	$2 b=6 a$ and $8 a=3 a^{2}+b+2$	M1dep	oe equations eg $\frac{b}{3}=a$ and $b+2=-3\left(\frac{b}{3}\right)^{2}+8 a$
	$\begin{aligned} & 3 a^{2}+3 a-8 a+2(=0) \\ & \text { or } 3 a^{2}-5 a+2(=0) \end{aligned}$	M1dep	oe quadratic equation in a
	$\begin{aligned} & (3 a-2)(a-1) \\ & \text { or } \frac{--5 \pm \sqrt{(-5)^{2}-4 \times 3 \times 2}}{2 \times 3} \end{aligned}$	M1	$\text { oe eg } \frac{5}{6} \pm \sqrt{\frac{25}{36}-\frac{2}{3}}$ ft their 3-term quadratic
	$a=\frac{2}{3}$ and $a=1$ or $a=\frac{2}{3}$ and $b=2$ or $a=1$ and $b=3$	A1	
	$a=\frac{2}{3}$ and $b=2$ and $a=1 \text { and } b=3$	A1	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
	$3\left(x^{2}+a x+a x+a^{2}\right) \ldots$ or $3\left(x^{2}+2 a x+a^{2}\right) \ldots$ or $3\left(x+\frac{b}{3}\right)^{2} \ldots$ or $2 b=6 a$ or $8 a=3 a^{2}+b+2$	M1	oe eg $3 x^{2}+6 a x+3$ or $\frac{b}{3}=a$ or $b+2=-3\left(\frac{b}{3}\right)^{2}+$	
$\begin{gathered} 21 \\ \text { cont } \end{gathered}$	$2 b=6 a$ and $8 a=3 a^{2}+b+2$	M1dep	oe equations eg $\frac{b}{3}=a$ and $b+2$	$+8 a$
	$\frac{8 b}{3}=3\left(\frac{b}{3}\right)^{2}+b+2$ or $b^{2}-5 b+6(=0)$	M1dep	oe quadratic equatio	
	$\begin{aligned} & (b-2)(b-3) \\ & \text { or } \frac{--5 \pm \sqrt{(-5)^{2}-4 \times 1 \times 6}}{2 \times 1} \end{aligned}$	M1	$\text { oe eg } \frac{5}{2} \pm \sqrt{\frac{25}{4}-6}$ ft their 3-term quadra	
	$b=2 \text { and } b=3$ or $a=\frac{2}{3}$ and $b=2$ or $a=1 \text { and } b=3$	A1		
	$a=\frac{2}{3}$ and $b=2$ and $a=1 \text { and } b=3$	A1		
	Additional Guidance			
	Allow $0 . \dot{6}$ for $\frac{2}{3}$			
	Allow 0.67 for $\frac{2}{3}$ for first A1			
	In quadratic formula allow 5^{2} for $(-5)^{2}$ but use of -5^{2} must be recovered			

