

Level 2 Certificate FURTHER MATHEMATICS 8365/2

Paper 2 Calculator

Mark scheme

June 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
М дер	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between <i>a</i> and <i>b</i> inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
	10x - 5 or $44 - 4x$	M1	may be seen in a grid
	10x - 5 + 44 - 4x or $6x + 39or 3 \times (2x + 13)$	M1dep	oe all terms correct in a single expression
1	3(2 <i>x</i> + 13)	A1	
	Ad	ditional G	uidance

Q	Answer	Mark	Comments	
	$5m \times (1 - 0.4)$ or $5m \times 0.6$ or $3m$	M1	oe eg $5m - 0.4 \times 5m$ or $5m$ may be seen in an equation eg $3m = m + 1$	ı – 2m
2(a)	$\frac{1}{2}$ or 0.5	A1		
	Ad	ditional G	uidance	
	2m only			MO
	2 <i>m</i> = 1			M1

Q	Answer	Mark	Comments
2(b)	$2w - 10 = 18^{3}$ or 2w - 10 = 5832 or $\frac{18^{3} + 10}{2}$	M1	oe eg 2 <i>w</i> = 5842
	2921	A1	
	Additional Guidance		uidance

Q	Answer	Mark	Comments	
	$12de \times 2d \text{ or } 24d^2e$ or $\frac{1}{2} \times 8e^2 \times 9d$ or $36de^2$	M1	oe eg 24 ed^2 or 36 e^2d	
3	24 <i>d</i> = 36 <i>e</i>	M1dep	oe equation with squared term eg $2d = 3e$ or $\frac{2d}{e} = 3$ or $\frac{e}{d}$	ns eliminated $=\frac{12}{18}$
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1		
	Additional Guidance			
	Equivalent fraction to $\frac{3}{2}$ or $1\frac{1}{2}$ with no incorrect working M2A			M2A0

Q	Answer	Mark	Comments	
	π × 100 (÷ 4) or $100π (÷ 4)or 25πorπ × 36 (÷ 4)$ or $36π (÷ 4)$ or $9π$	M1	Oe	
	$\pi \times 100 \div 4 - \pi \times 36 \div 4$	M1dep	oe eg $\frac{100\pi - 36\pi}{4}$ or $\frac{64\pi}{4}$	
Α	16л A1 SC2 2176л			
4	Additional Guidance			
	Use of circumference instead of area throughout M0M0A0			
	Allow substitution of $\pi = [3.14, 3.142]$ for M marks			
	16 $π$ in working with eg 50.3 on answer line M2A0			
	SC2 is for using radii of 100 and 36			
	Omission of π in working must be reco	overed		

Q	Answer	Mark	Comments		
	k - 1 = 15 - 6 or $\tan 45 = \frac{k - 1}{15 - 6}$	M1	oe equation eg $k - 1 = 9$ or $\frac{k - 1}{9} = 1$		
	(k =) 15 - 6 + 1 or $(k =) (15 - 6) \tan 45 + 1$ or (k =) 10	M1dep	oe eg $(k =) 9 + 1$ may be seen on diagram		
	(5.5, 8) A1 oe eg $\left(5\frac{1}{2}, 8\right)$ or $\left(\frac{11}{2}, 8\right)$ SC1 answer (, 8)				
5	Additional Guidance				
	First M1 can be scored using Pythagol eg $(PR^2 =) 9^2 + (15 - 6)^2$ or 162 and (PQ =) 6 - 1 or 5	as' theore	em and cosine rule		
	and (angle $QPR = 180 - 45$ or 135 and $(k-1)^2 + (15-1)^2 = \text{their } 162 + (\text{their } 5)^2$ $-2 \times \sqrt{\text{their } 162} \times \text{their } 5 \times \cos \text{ their } 135$ M1				
	10 but not seen or implied to be k			MOMO	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$y^2 = \frac{x + 2w}{3}$	M1		
	$3y^2 - x = 2w$ or $\frac{3y^2 - x}{2}$ or $\frac{3y^2}{2} - \frac{x}{2}$	M1dep		
	$w = \frac{3y^2 - x}{2}$ or $w = \frac{3y^2}{2} - \frac{x}{2}$	A1		
	Alternative method 2			
6	$y^2 = \frac{x}{3} + \frac{2w}{3}$	M1		
	$y^{2} - \frac{x}{3} = \frac{2w}{3}$ or $\frac{3}{2} \left(y^{2} - \frac{x}{3} \right)$ or $\frac{3y^{2}}{2} - \frac{3x}{6}$	M1dep		
	$w = \frac{3}{2} \left(y^2 - \frac{x}{3} \right)$ or $w = \frac{3y^2}{2} - \frac{3x}{6}$	A1		
	Ad	ditional G	uidance	
	Condone eg $w = \frac{3y^2 - x}{2}$ seen in wo	orking with	$\frac{3y^2 - x}{2}$ on answer line	M2A1
	$w = \frac{3}{2}y^2 - \frac{1}{2}x$ etc			M2A1

Q	Answer	Mark	Comments
7(a)	a^{4m} or a^{10m} or 4m = 10m	M1	oe eg $a^{4 \times m}$
	0	A1	
	Ad	ditional G	Buidance
	Allow <i>a</i> to be replaced by any value gr	eater than	1

Q	Answer	Mark	Comments	
7(b)	$w^{13}x^{7} \div w^{3}x^{2} \text{ or } w^{10}x^{5}$ or $x^{2}y^{5} = w^{10}x^{7} \text{ or } y^{5} = \frac{w^{10}x^{7}}{x^{2}}$ or $w^{3}y^{5} = w^{13}x^{5} \text{ or } y^{5} = \frac{w^{13}x^{5}}{w^{3}}$	M1	oe eg $\frac{w^{13}x^7}{w^3x^2}$ may be embedded eg $\sqrt[5]{w^{10}}$	x ⁵
	$w^2 x^{(1)}$	A1	oe eg xw^2	
	Ac	Iditional G	uidance	
	$y = w^{10}x^5$			M1A0

Q	Answer	Mark	Comments	
	-3 2 6 14 with no other solutions	B4	B3 three correct with at most B2 two correct with at most to B1 one correct with at most to SC2 –3 2 6 14 with no seen SC1 Two or three of –3 2 no other values seen	one incorrect wo incorrect hree incorrect o other values 6 14 with
	Additional Guidance			
8	Solutions may be in any order eg1 –3 14 6 2 eg2 14 –3			B4 B2
	x < -3 $2 < x < 6$ $x > 142 \le x \le 6$			
	-3 2 6 14 seen in working with n answer line $-3 \le x \le 14$	o other va	alues and	SC2

Q	Answer	Mark	Comments
	$\frac{b+a}{ab}$	B1	
9(a)	Ad	ditional G	uidance

Q	Answer	Mark	Comments	
9(b)	$\frac{c^3}{6c+1}$	B3 Iditional G	B2 $c^{3}(6c - 1)$ and $(6c + 1)(6c - 1)$ B1 $c^{3}(6c - 1)$ or $(6c + 1)(6c - 1)$	6 <i>c</i> – 1) c – 1)
$\frac{c^3}{6c+1}$ followed by incorrect further work			B2	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{4}{3} \times \pi \times \frac{27k^3}{8} \text{ or } \frac{9\pi k^3}{2}$	M1	oe	
	$k^{3} = 972 \times 2 \div 9$ or $k^{3} = 216$ or $\sqrt[3]{216}$	M1dep	oe eg $k^3 = 972\pi \times 2 \div 9\pi$ must have k^3 seen or implied	
	6	A1		
	Alternative method 2			
	972 $\pi \div \frac{4}{3}\pi$ or 729		oe eg ($r^3 =$) 972 ÷ $\frac{4}{3}$	
	or 972 $\pi \div \frac{4}{3}\pi$ or 729	M1		
10	or ³ √729 or 9			
	$\frac{3k}{2} = \sqrt[3]{\text{their 729}}$ or $\frac{3k}{2} = 9$	M1dep	oe must have $\frac{3k}{2}$ seen or implie	d
	or $9 \times 2 \div 3$			
	6	A1		
	Additional Guidance			
	Alt 1 $\frac{4}{3} \times \frac{27k^3}{8}$ is M0 unless recovered			
	Alt 2 972 $\pi \div \frac{4}{3}$ is M0 unless recovered			
	Alt 1 $\frac{4}{3} \times \pi \times \left(\frac{3k}{2}\right)^3$ not subsequently	y simplified	d correctly	МО

Q	Answer	Mark	Comments		
	3 terms from $20x^2 -5xy^2$ (+) $12xy^2 -3y^4$	M1	may be seen in a grid		
	$20x^2 - 5xy^2 + 12xy^2 - 3y^4$	A1	four correct terms in any orde may be seen in a grid implied by correct answer	er	
11	$20x^2 + 7xy^2 - 3y^4$	terms may be in any order			
	Additional Guidance Terms seen in a grid must have the correct signs				
	Terms must be fully processed eg do not allow $4x3y^2$ unless recovered				
	xy^2 may be y^2x throughout				
	$20x^2 + 7xy^2 - 3y^4$ followed by incorrec	t further w	vork	M1A1A0	

Q	Answer	Mark	Comments	
	10	B1	y-coordinate of C	
			may be seen on the graph	
	$(-)\frac{\text{their 10}}{5}$ or $(-)2$	M1	\pm their gradient of L	
	$(y=) - \frac{\text{their 10}}{5}x + \text{their 10}$		oe eg $y - 0 = -\frac{\text{their 10}}{5}(x - 5)$	5)
		M1dep	or $y - \text{their } 10 = -\frac{\text{their } 10}{5} (x)$	— 0)
			must use a negative gradient	
	$-\frac{\text{their 10}}{5}x + \text{their 10} = 3x + 2$	M1dep	oe	
	or $5x = 8$			
	1.6	oe eg $\frac{8}{5}$		
12			ft B0M3	
	Additional Guidance			
	A1ft values must be exact or rounded to 1 decimal place or better			
	Ignore any y-coordinate of B calculate	d after wo	king out the x-coordinate	
	Assuming the lines are perpendicular	can score	a maximum of B1	
	y-coordinate of $C = 8$			B0
	gradient L = $-\frac{8}{5}$			M1
	$y = -\frac{8}{5}x + 8$			M1
	$-\frac{8}{5}x+8=3x+2$			M1
	1.3			A1ft
	$\left(\text{Note that the exact value is } \frac{30}{23} \right)$			

Q	Answer	Mark	Comments	
	$3ax^2$ or $20x$	M1	oe eg $3 \times ax^{3-1}$ or $2 \times 10x^{2-1}$	
	$3a \times 2^2 + 20 \times 2$ or $12a + 40$	M1	ft substitution of $x = 2$ into their deriven must have attempted differentiation and have two terms with one involvin may be seen in a denominator	vative
13	their $(12a + 40) = -1 \div -\frac{1}{4}$ or their $(12a + 40) = 4$	M1dep	oe eg $-\frac{1}{\text{their (12a+40)}} = -\frac{1}{4}$ dep on 2nd M1	
	-3	A1		
	Additional Guidance			
	Only substituting $x = 2$ into y		Ze	ero
	$ax^2 + 10x$ $4a + 20 = 4$		M1	10 M1
	$3x^2 + 20x$ $12 + 20$		N MO	11)MO

Q	Answer	Mark	Comments		
	Reflection in the x-axis				
	or	B1			
	reflection in $y = 0$				
	Additional Guidance				
14(a)	a) Reflect(ed) in the <i>x</i> -axis				
	Do not allow if there is additional incorrect information				
	eg1 Reflection in the <i>x</i> -axis about the origin E				
	eg2 Reflection in the <i>x</i> -axis and rotated				
	Reflection		B0		

Q	Answer	Mark	Comments	
	Rotation through 180° centre the origin or enlargement scale factor –1 centre the origin	B2	B1 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ or enlargement scale factor -1 or rotation through 180° or indication that B represents ro through 270° (anticlockwise c origin) or indication that B represents ro through 90° clockwise (centre	otation entre the otation the origin)
	Additional Guidance			
	For B2 ignore any reference to clockwise or anticlockwise rotation			
14(b)	Condone omission of degrees symbol throughout eg B is rotation through 270			
	Mark intention eg1 Rotate(d) 180 about <i>O</i> eg2 Enlarge(d) sf –1			
	Allow rotation through 540 centre the c	B2		
	Do not allow if there is additional information that is incorrect eg1 Rotation through 180° and a reflection eg2 Enlargement sf –1 rotated through 90° eg3 Rotation through 180° centre the origin so the shape turns			B0 B0 B2
	Rotation			B0
	Enlargement			B0
	Do not allow turn for rotation			
	Do not allow eg half turn for 180°			
	Do not allow negative enlargement			

Q	Answer	Mark	Comments
	Alternative method 1		
	angle <i>ABO</i> = <i>x</i>	M1	may be seen on diagram implied by angle $AOB = 180 - 2x$
	angle <i>ACB</i> = 180 - <i>w</i>	M1	oe eg angle $ACB + w = 180$ may be seen on diagram
	angle $AOB = 2 \times (180 - w)$ or angle $AOB = 360 - 2w$	M1dep	may be seen on diagram dep on 2nd M1 angle <i>AOB</i> may be seen as 180 – 2 <i>x</i>
	$x + x + 2 \times (180 - w) = 180$	M1dep	oe eg 2(180 – w) = 180 – 2 x dep on M3
	w = x + 90 with M4 and all reasons given	A1	eg of reasons isosceles triangle and angles on a straight line and angle at centre and angle sum of triangle
15	Alternative method 2		
	angle ABO = x	M1	may be seen on diagram implied by angle $AOB = 180 - 2x$
	angle $AOB = 180 - x - x$ or angle $AOB = 180 - 2x$	M1dep	oe eg $2x$ + angle AOB = 180 may be seen on diagram
	angle $ACB = \frac{1}{2} \times (180 - x - x)$ or angle $ACB = 90 - x$	M1dep	oe eg angle $ACB = \frac{1}{2} \times (180 - 2x)$ may be seen on diagram angle <i>ACB</i> may be seen as $180 - w$
	$\frac{1}{2} \times (180 - x - x) + w = 180$	M1dep	oe eg $w = 180 - (90 - x)$
	w = x + 90 with M4 and all reasons given	A1	eg of reasons isosceles triangle and angle sum of triangle and angle at centre and angles on a straight line

Mark scheme and Additional Guidance continues on the next two pages

Q	Answer	Mark	Comments
15 cont	Alternative method 3 Draws tanger	nt (eg PQ)	at A
	angle $QAB = 90 - x$	M1	oe eg x + angle QAB = 90 may be seen on diagram
	angle $ACB = 180 - w$	M1	oe eg angle $ACB + w = 180$ may be seen on diagram
	angle QAB = angle ACB	M1	may be seen on diagram eg both angles labelled y
	90 - x = 180 - w	M1dep	oe eg $90 - x + w = 180$ dep on M3
	w = x + 90 with M4 and all reasons given	A1	eg of reasons radius perpendicular to tangent and angles on a straight line and alternate segment

Additional Guidance is on the next page

	Additional Guidance	
	Allow angle BCD for w throughout	
	3rd M1 and 4th M1 may be seen in one line of working	
	eg1 Alt 1	
	angle $ABO = x$	M1
	angle $ACB = 180 - w$	M1
	$180 - 2x = 2 \times (180 - w)$	M1M1
	eg2 Alt 2	
	angle $ABO = x$	M1
	angle $AOB = 180 - 2x$	M1
15 cont	$180 - w = \frac{1}{2} \times (180 - 2x)$	M1M1
	Condone slips in notation only if angles are marked in correct position on the diagram	
	eg1 Do not allow angle $C = 180 - w$ unless marked in correct position on the diagram	
	eg2 Allow ACB for angle ACB	
	For reasons, allow if the intention is clear	
	eg1 Allow isos triangle for isosceles triangle	
	eg2 Allow angles in a triangle for angle sum of a triangle	
	eg3 Allow angles on a line for angles on a straight line	
	For reasons do not allow incorrect statements	
	eg do not allow angles in a triangle add to 360	

Q	Answer	Mark	Comments	
	15 × 2 ⁴ or 15 × 16 or 240	M1	oe eg $\binom{6}{4} 2^4$ or $2^6 \times \frac{6 \times 5}{2} \times$ may include a^2 and/or x^4 allow embedded eg ${}^6C_4 a^2(2)$	$\left(\frac{1}{2}\right)^2$ $(2x)^4$
	$240a^2 = 1500 \text{ or } a^2 = \frac{1500}{240}$ or $(\pm)\sqrt{\frac{1500}{240}}$ or $\frac{5}{2}$ or $-\frac{5}{2}$	M1dep	must evaluate $\begin{pmatrix} 6\\4 \end{pmatrix}$ oe eg 15 × 2 ⁴ a^2 = 1500 or (may include x^4 on both sides equation	$\pm)\sqrt{\frac{1500}{15\times2^4}}$ of an
16	$\frac{5}{2}$ and $-\frac{5}{2}$ with no other values	oe eg 2.5 and –2.5 SC2 [2.236, 2.24] and [–2.24 SC1 [2.236, 2.24] or [–2.24,	4, –2.236] –2.236]	
	Additional Guidance			
	The relevant term must be selected fro can be ignored	om a full ex	xpansion but the other terms	
	Allow $\begin{pmatrix} 6\\4 \end{pmatrix}$ to be $\begin{pmatrix} 6\\2 \end{pmatrix}$			
	$240a^2x^4 = 1500x^4$			M1M1
	$240a^2x^4 = 1500$ recovered to $(\pm)\sqrt{\frac{1500}{240}}$ oe			M1M1
	$240a^2x^4 = 1500 \text{ not recovered to } (\pm) \sqrt{\frac{1}{2}}$	1500 240 oe		M1M0

Q	Answer	Mark	Comments	
	Alternative method 1 Works out M	D and BD	and uses tan MBD	
	$\tan 28 = \frac{GN}{32}$ or 32 $\tan 28$ or [17, 17.015]	M1	oe eg $\frac{32}{\tan(90-28)}$ working out <i>GN</i> or <i>HM</i>	
	32 – 32 tan 28 or [14.985, 15]	M1dep	oe working out <i>NC</i> or <i>MD</i>	
	$\sqrt{32^2 + 32^2}$ or $\sqrt{2048}$ or [45.2, 45.3]	M1	oe eg 32 $\sqrt{2}$ working out <i>BD</i>	
	tan <i>MBD</i> = their [14.985, 15] their [45.2, 45.3]	M1dep	oe eg tan ⁻¹ $\frac{\text{their} [14.985, 15]}{\text{their} [45.2, 45.3]}$	
	[18.3. 18.4]	A1		
	Alternative method 2 Works out <i>BD</i> and <i>MB</i> and uses cos <i>MBD</i>			
17	$\tan 28 = \frac{GN}{32}$ or 32 $\tan 28$ or [17, 17.015]	M1	oe eg $\frac{32}{\tan(90-28)}$ working out <i>GN</i> or <i>HM</i>	
	32 – 32 tan 28 or [14.985, 15]	M1dep	oe working out <i>NC</i> or <i>MD</i>	
	$\sqrt{32^2 + 32^2}$ or $\sqrt{2048}$ or [45.2, 45.3] or $\sqrt{32^2 + 32^2}$ + their [14.985,15] ² or [47.67, 47.7]	M1	oe eg $32\sqrt{2}$ working out <i>BD</i> or <i>MB</i> if awarding this mark for working out <i>MB</i> it is dependent on M2	
	$\cos MBD = \frac{\sqrt{32^2 + 32^2}}{\sqrt{32^2 + 32^2} + \text{their } [14.985, 15]^2}$	M1dep	oe eg cos ⁻¹ $\frac{\sqrt{32^2 + 32^2}}{\sqrt{32^2 + 32^2} + \text{their } [14.985, 15]^2}$ dep on M3	
	[18.3, 18,4]	A1		

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3 Works out M	ID and MB	and uses sin MBD	
17 cont	$\tan 28 = \frac{GN}{32}$ or 32 $\tan 28$ or [17, 17.015]	M1	oe eg $\frac{32}{\tan(90-28)}$ working out <i>GN</i> or <i>HM</i>	
	32 – 32 tan 28 or [14.985, 15]	M1dep	oe working out <i>NC</i> or <i>MD</i>	
	$\sqrt{32^2 + 32^2}$ + their [14.985,15] ² or [47.67, 47.7]	M1dep	oe working out <i>MB</i>	
	$\sin MBD = \frac{\text{their [14.985,15]}}{\sqrt{32^2 + 32^2 + \text{their [14.985,15]}^2}}$	M1dep	oe eg sin ⁻¹ $\frac{\text{their} [14.985]}{\sqrt{32^2 + 32^2 + \text{their} [14.985]}}$,15] 4.985,15] ²
	[18.3, 18,4]	A1		
	Additional Guidance			
	1st M1 <i>GN</i> may be seen as a letter, eg <i>x</i> , but do not award if subsequently used as the length of an incorrect side (eg <i>MN</i>)			
	4th M1 <i>MBD</i> may be seen as a letter, eg y , but do not award if subsequently used as the size of an incorrect angle (eg <i>DMB</i>)			
	Alt 1 or Alt 2 $32\sqrt{1^2 + 1^2}$			3rd M1
	Alt 1 tan $MBD = \frac{32(1 - \tan 28)}{32\sqrt{2}}$ or $\tan MBD = \frac{(1 - \tan 28)}{\sqrt{2}}$			M4

Q	Answer	Mark	Comments	
	Alternative method 1			
	12 or $-3x^{-2}$	M1	oe eg 12 x^0 or $3 \times -1x^{-1-1}$ or $-\frac{3}{x^2}$	
	12 and $-3x^{-2}$	M1dep	oe eg 12 - $\frac{3}{x^2}$	
			or $12x^0$ and $3 \times -1x^{-1-1}$	
	$12 - 3x^{-2} = 0$ and $x = 0.5$		oe	
18	or	M1dep	= 0 must be seen	
	$12 - 3 \times 0.5^{-2} = 0$		condone inclusion of $x = -0.5$	
	$6x^{-3}$		oe eg $-2 \times -3x^{-2-1}$	
		M1	ft differentiation of their first derivative if it involves a negative power of x	
	M4 and 6×0.5^{-3} (= 48) which is		oe	
	positive (so minimum)	A1	do not allow if $\frac{6}{0.5^3}$ is evaluated	
			incorrectly	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
18 cont	12 or $-3x^{-2}$	M1	oe eg $12x^0$ or $3 \times -1x^{-1-1}$	
	12 and $-3x^{-2}$	M1dep	oe eg $12 - \frac{3}{x^2}$ or $12x^0$ and $3 \times -1x^{-1-1}$	
	$12 - 3x^{-2} = 0$ and $x = 0.5$ or $12 - 3 \times 0.5^{-2} = 0$	M1dep	oe = 0 must be seen condone inclusion of $x = -0.8$	5
	Substitutes one <i>x</i> value in range (0, 0.5) into $12 - 3x^{-2}$ and substitutes one <i>x</i> value > 0.5 into $12 - 3x^{-2}$	M1	eg $12 - 3 \times 0.25^{-2}$ and $12 - 3 \times 1^{-2}$ ft substitution into their first derivative if it involves a negative power of <i>x</i>	
	M4 and two correct evaluations (so minimum) or M4 and two correct signs shown with no incorrect evaluations (so minimum)	A1	eg M4 and $12 - 3 \times 0.25^{-2}$ and $12 - 3 \times 1^{-2} = 9$ (so minimum or M4 and $12 - 3 \times 0.25^{-2}$ is ne and $12 - 3 \times 1^{-2}$ is positive (s	= -36) egative so minimum)
	Additional Guidance			
	Alt 1 $12 + 3x^{-2} = 0$ $-6x^{-3}$			M1M0M0 M1A0
	Alt 2 $12 - 3x^{-2}$ $6x^{-3}$ $12 - 3 \times 0.25^{-2} = -36$ $12 - 3 \times 1^{-2}$ (A1 only possible after awarding M4)	= 9 so m	inimum	M1M1M0 M1 A0
	Ignore any testing of the stationary point at $x = -0.5$			

Q	Answer	Mark	Comments
	<i>x</i> ⁴	B1	
19(a)	Ad	ditional G	Guidance

Q	Answer	Mark	Comments	
19(b)	$2x^2 + 10$ or $2(x^2 + 5)$	B2	B1 k(x) = 2x or $(k(x))^2 = 4x^2$ or $h(2x) = 4x^2 + 5$ or $(2x)^2 + 5$	
	Additional Guidance			
	$2(x^2 + 5)$ in working with answer $2x^2$	+ 5		B1

Q	Answer	Mark	Comments
	Alternative method 1 Uses a common denominator of sin <i>x</i>		
	$\frac{2\sin x + \cos x}{\frac{\sin x}{\cos x}} - \frac{1}{\sin x}$ or $\frac{\cos x(2\sin x + \cos x)}{\sin x} - \frac{1}{\sin x}$	M1	implied by 2nd M1 condone omission of $-\frac{1}{\sin x}$
	$\frac{2\sin x \cos x + \cos^2 x}{\sin x} - \frac{1}{\sin x}$ or $2\cos x + \frac{\cos^2 x}{\sin x} - \frac{1}{\sin x}$	M1dep	condone omission of $-\frac{1}{\sin x}$
20	$\frac{2 \sin x \cos x + \cos^2 x - \cos^2 x - \sin^2 x}{\sin x}$ or $\frac{2 \sin x \cos x + 1 - \sin^2 x - 1}{\sin x}$ or $\frac{2 \sin x \cos x - \sin^2 x}{\sin x}$ or $2 \cos x - \frac{\sin^2 x}{\sin x}$	M1dep	
	$2\cos x - \sin x$ with M3	A1	

Mark scheme and Additional Guidance continues on the next two pages

r			
	Alternative method 2 Uses a common denominator of tan x sin x		
	$\frac{\sin x (2 \sin x + \cos x) - \tan x}{\tan x \sin x}$		tan x may be seen as $\frac{\sin x}{\cos x}$
	or	M1	
	$\frac{2\sin^2 x + \cos x \sin x - \tan x}{\tan x \sin x}$		
20	$\frac{2\sin^2 x \cos x + \cos^2 x \sin x - \sin x}{\sin^2 x}$	M1dep	
cont	$\frac{2\sin x \cos x + \cos^2 x - \cos^2 x - \sin^2 x}{\sin x}$		allow the fractions with denominator $\sin^2 x$ eg $\frac{2\sin^2 x \cos x + \sin x - \sin^3 x - \sin x}{\sin^2 x}$
	$\frac{2\sin x\cos x + 1 - \sin^2 x - 1}{\sin x}$	M1dep	Sin x
	or		
	$\frac{2\sin x\cos x - \sin^2 x}{\sin x}$		
	$2\cos x - \sin x$ with M3	A1	

Additional Guidance is on the next page

Additional Guidance	Additional Guidance		
$2\cos x - \sin x$ with no method	Zero		
Allow eg $1\sin x$ for $\sin x$			
Condone <i>x</i> missing for M marks and award A mark if recovered			
Fractions may be seen as separate fractions/terms eg1 Alt 1			
$\frac{2\sin x}{\frac{\sin x}{\cos x}} + \frac{\cos x}{\frac{\sin x}{\cos x}} - \frac{1}{\sin x}$	M1		
$2\cos x + \frac{\cos^2 x}{\sin x} - \frac{1}{\sin x}$	M1		
$2\cos x + \frac{1}{\sin x} - \frac{\sin^2 x}{\sin x} - \frac{1}{\sin x}$	M1		
eg2 Alt 2			
$\frac{2\sin^2 x + \cos x \sin x}{\tan x \sin x} - \frac{\tan x}{\tan x \sin x}$	M1		
$\frac{2\sin^2 x \cos x + \cos^2 x \sin x}{\sin^2 x} - \frac{\sin x}{\sin^2 x}$	M1		
$\frac{2\sin x \cos x + \cos^2 x}{\sin x} - \frac{\cos^2 x + \sin^2 x}{\sin x}$	M1		

Q	Answer	Mark	Comments
	Alternative method 1		
	$3(x^{2} + ax + ax + a^{2}) \dots$ or $3(x^{2} + 2ax + a^{2}) \dots$ or $3\left(x + \frac{b}{3}\right)^{2} \dots$ or $2b = 6a$ or $8a = 3a^{2} + b + 2$	M1	oe eg $3x^2 + 6ax + 3a^2 \dots$ or $\frac{b}{3} = a$ or $b + 2 = -3\left(\frac{b}{3}\right)^2 + 8a$
	2b = 6a		oe equations
	and $8a = 3a^2 + b + 2$	M1dep	eg $\frac{b}{3} = a$ and $b + 2 = -3\left(\frac{b}{3}\right)^2 + 8a$
	$3a^2 + 3a - 8a + 2 (= 0)$ or $3a^2 - 5a + 2 (= 0)$	M1dep	oe quadratic equation in <i>a</i>
21	(3a-2)(a-1) or $\frac{5 \pm \sqrt{(-5)^2 - 4 \times 3 \times 2}}{2 \times 3}$	M1	oe eg $\frac{5}{6} \pm \sqrt{\frac{25}{36} - \frac{2}{3}}$ ft their 3-term quadratic
	$a = \frac{2}{3}$ and $a = 1$ or $a = \frac{2}{3}$ and $b = 2$ or a = 1 and $b = 3$	A1	
	$a = \frac{2}{3}$ and $b = 2$ and a = 1 and $b = 3$	A1	

Mark scheme and Additional Guidance continue on the next page

	1			
	Alternative method 2			
	$3(x^2 + ax + ax + a^2) \dots$		oe eg $3x^2 + 6ax + 3a^2 \dots$	
	or $3(x^2 + 2ax + a^2) \dots$		or $\frac{b}{3} = a$	
	or $3\left(x+\frac{b}{3}\right)^2$	M1	or $b + 2 = -3\left(\frac{b}{3}\right)^2 + 8a$	
	or $2b = 6a$			
	or $8a = 3a^2 + b + 2$			
	2b = 6a		oe equations	
	and $8a = 3a^2 + b + 2$	M1dep	eg $\frac{b}{3} = a$ and $b + 2 = -3\left(\frac{b}{3}\right)^2 + 8a$	
	$\frac{8b}{3} = 3\left(\frac{b}{3}\right)^2 + b + 2$	M1dep	oe quadratic equation in b	
	or $b^2 - 5b + 6 (= 0)$			
	(<i>b</i> -2)(<i>b</i> -3)		oe eg $\frac{5}{2\pm \sqrt{25}-6}$	
21	or $\frac{-5\pm\sqrt{(-5)^2-4\times1\times6}}{2\times1}$	M1	[°] 2 ↓ 4 ft their 3-term quadratic	
cont	h-2 and $h-3$			
	or			
	$a=rac{2}{3}$ and $b=2$	A1		
	or			
	a = 1 and $b = 3$			
	$a=rac{2}{3}$ and $b=2$			
	and	A1		
	a = 1 and $b = 3$			
	Additional Guidance			
	Allow 0.6 for $\frac{2}{3}$			
	Allow 0.67 for $\frac{2}{3}$ for first A1			
	In quadratic formula allow 5^2 for $(-5)^2$ but use of -5^2 must be recovered			