A
AQAE

Surname

Other Names

Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 PHYSICS

\square
Foundation Tier Paper 1

8463/1F

Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

0	1	1

A student investigated the three states of matter.
The arrangement of particles in the three states of matter are different.

On the opposite page, draw ONE line from each particle arrangement to the state of matter. [2 marks]

Particle arrangement

[Turn over]

A large lump of ice was heated and changed state.
FIGURE 1 shows how the temperature varied with time.

FIGURE 1

Time in seconds

011.2

Which part of FIGURE 1 shows when the ice was melting? [1 mark]

Tick (\checkmark) ONE box.

[Turn over]

011.3

Which part of FIGURE 1, on page 6, shows when the water was boiling? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D
\square
$0 \mid 1$
4
Which property of the water particles changes as the temperature of the water increases? [1 mark]

Tick (\checkmark) ONE box.

The kinetic energy of the particles

The mass of each particle

The number of particles

011.5

Calculate the thermal energy needed to melt 0.250 kg of ice at $0^{\circ} \mathrm{C}$.
specific latent heat of fusion of water $=334000 \mathrm{~J} / \mathrm{kg}$
Use the equation:
thermal energy $=$ mass \times specific latent heat
[2 marks]
\qquad
\qquad

Thermal energy = \qquad J
[Turn over]

0	1

Complete the sentence.
Choose the answer from the list. [1 mark]

- condenses
- evaporates
- ionises
- sublimates

A substance is heated and changes directly from a solid to a gas. The substance \qquad .

BLANK PAGE

[Turn over]

$0 \mid 2$
FIGUR
FIGURE 2 shows part of the National Grid linking a power station to consumers.
FIGURE 2

Name the parts of FIGURE 2 labelled A and B. [2 marks]
012. 2
Electricity is transmitted through A at a very high potential difference.
What is the advantage of transmitting electricity at a very high potential
difference? [1 mark]
Tick (\checkmark) ONE box.
\square A high potential difference is safer for consumers.
\square Less thermal energy is transferred to the surroundings.
\square Power transmission is faster.
[Turn over]
0.2 . 3

The power station generates electricity at a potential difference of 25000 V .

The energy transferred by the power station in one second is 500000000 J .

Calculate the charge flow from the power station in one second.

Use the equation:

$$
\text { charge flow }=\frac{\text { energy }}{\text { potential difference }}
$$

[2 marks]

Charge flow in one second = C

BLANK PAGE

[Turn over]

The electricity supply to a house has a potential difference of 230 V .

TABLE 1 shows the current in some appliances in the house.

TABLE 1

Appliance	Current in amps
Dishwasher	6.50
DVD player	0.10
Lamp	0.40
TV	0.20

\section*{| 0 | 2 |
| :--- | :--- |}

Calculate the total power of all the appliances in TABLE 1.

Use the equation:
power $=$ potential difference \times current
[3 marks]
\qquad

Each appliance in TABLE 1 is switched on for 2 hours. Which appliance will transfer the most energy? Give a reason for your answer. [2 marks] Appliance Reason \qquad
[Turn over]
0.2 . 6

The average energy transferred from the National Grid every second for each person in the UK is 600 J .

There are 32000000 seconds in one year.
Calculate the average energy transferred each year from the National Grid for each person in the UK.
[2 marks]

Average energy transferred = J

BLANK PAGE

[Turn over]

\section*{| 0 | 3 |
| :--- | :--- | :--- |}

A student investigated the density of different fruits.
To determine the density of each fruit, the student measured the volume of each fruit.

FIGURE 3 shows the equipment the student could have used.

FIGURE 3

Beaker

Measuring cylinder

Lime (a fruit)

0.3 .1

Describe a method the student could have used to measure the volume of the lime. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| 0 | 3 |
| :--- | :--- |}

The student measured the volume of each fruit three times and then calculated a mean value.

The three measurements for a grape were

$$
2.1 \mathrm{~cm}^{3} \quad 2.1 \mathrm{~cm}^{3} \quad 2.4 \mathrm{~cm}^{3}
$$

Calculate the mean value. [2 marks]
0.3 . 3

What are the advantages of taking three measurements and calculating a mean value? [2 marks]

Tick (\checkmark) TWO boxes.

Allows anomalous results to be identified and ignored.

Improves the resolution of the volume measurement.

Increases the precision of the measured volumes.

Reduces the effect of random errors when using the equipment.

Stops all types of error when using the equipment.
[Turn over]

24

0	3

The mass of an apple was 84.0 g .
The volume of the apple was $120 \mathrm{~cm}^{3}$.
Calculate the density of the apple.
Give your answer in $\mathbf{g} / \mathrm{cm}^{3}$.
Use the equation:
density $=\frac{\text { mass }}{\text { volume }}$
[2 marks]
\qquad
Density =
$\mathrm{g} / \mathrm{cm}^{3}$

BLANK PAGE

[Turn over]
$|||||||||||||||||||||||||\mid$

$0 \mid 4$

A student investigated how the current in a circuit varied with the number of lamps connected in parallel in the circuit.

FIGURE 4 shows the circuit with three identical lamps connected in parallel.

FIGURE 4

FIGURE 5 shows the results.
FIGURE 5
Current
in amps

[Turn over]

BLANK PAGE

0.4 . 1

Complete the sentences.
Choose answers from the list.
Each answer can be used once, more than once or not at all. [3 marks]

- decreased
- stayed the same
- increased

As the number of lamps increased, the current

As the number of lamps increased, the total resistance of the circuit

As the number of lamps increased, the potential difference across the battery
[Turn over]

0.4 . 2

When there were three lamps in the circuit the ammeter reading kept changing between 0.35 A and 0.36 A .

What type of error would this lead to? [1 mark]
Tick (\checkmark) ONE box.

Random error

Systematic error

Zero error

FIGURE 6, on the opposite page, shows a circuit with five ammeters and three identical lamps.

FIGURE 6

0.4 . 3

Complete TABLE 2 to show the readings on ammeters A_{2} and A_{5}. [2 marks]

TABLE 2

Ammeter	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
Current in amps	0.36		0.12	0.12	

[Turn over]

0	4	4

The resistance of one lamp is 15Ω.
The current in the lamp is 0.12 A .
Calculate the power output of the lamp.
Use the equation:
power $=(\text { current })^{2} \times$ resistance
[2 marks]

$$
\begin{array}{cc}
\text { Power }= & W \\
\square \\
\hline
\end{array}
$$

05
Atoms of different elements have different properties.
0.5 . 1

Which of the following is the same for all atoms of the same element? [1 mark]

Tick (\checkmark) ONE box.

Atomic number

Mass number

Neutron number

\section*{| 0 | 5 |
| :--- | :--- | :--- |}

Which of the following is different for isotopes of the same element? [1 mark]

Tick (\checkmark) ONE box.

Number of electrons

Number of neutrons

Number of protons

[Turn over]
0.5 . 3

A nucleus emits radiation.
FIGURE 7 shows how the mass number and the atomic number change.

The nucleus is labelled D .

FIGURE 7

Mass
number

Which type of radiation is emitted when nucleus D decays? [1 mark]

Tick (\checkmark) ONE box.

Alpha

Beta

Neutron
[Turn over]
0.5 .4

Nucleus E also emits radiation.
FIGURE 8 shows how the mass number and the atomic number change for nucleus E .

FIGURE 8

Mass
number

Atomic number

Which type of radiation is emitted when nucleus E decays? [1 mark]

Tick (\checkmark) ONE box.

Alpha

Beta

Neutron
[Turn over]
Beta radiation can be used to monitor the thickness of paper during production.
FIGURE 9 shows how the radiation is used.
FIGURE 9

The computer uses information from the radiation detector to change the size of
the gap between the rollers. Computer
0.5 .5
Complete the sentences.
Choose answers from the list.
Each answer can be used once, more than once or not at all.

- decrease
- stay the same
- increase
The thickness of the paper between the beta source and the detector increases. [2 marks]
The reading on the detector will
This is because the amount of radiation absorbed by the paper will
[Turn over]

Tick (\checkmark) ONE box.

The time it takes for all the nuclei in a radioactive sample to split in half.
\square
\square

\square The time it takes for the radiation to travel half of its range in air.

∞

[Turn over]

$0 \mid 6$

FIGURE 10 shows a house with a solar power system.
The solar cells generate electricity.
When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

FIGURE 10

0.6 .1

The solar cells on the roof of the house always face in the same direction.

Explain ONE disadvantage caused by the solar cells only facing in one direction. [2 marks]

[Turn over]

0	6

The mean current from the solar cells to the battery is 3.5 A .

Calculate the charge flow from the solar cells to the battery in 3600 seconds.

Use the equation:
charge flow $=$ current \times time
[2 marks]
\qquad
\qquad
\qquad

Charge flow = C

0	6	3

Write down the equation which links efficiency, total power input and useful power output. [1 mark]
\qquad

0	6.	4

At one time in the day, the total power input to the solar cells was 7500 W .

The efficiency of the solar cells was 0.16
Calculate the useful power output of the solar cells. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Useful power output = \qquad W
[Turn over]
0.6 .5

The wasted energy that is NOT usefully transferred by the solar cells is dissipated.

What happens to energy that has been dissipated? [1 mark]

Tick (\checkmark) ONE box.

The energy becomes less useful.

The energy is destroyed.

The energy is used to generate electricity.
0.6 . 6

Why is it unlikely that all the UK's electricity needs could be met by solar power systems? [1 mark]

Tick (\checkmark) ONE box.

A very large area would need to be covered with solar cells.

Solar power is a non-renewable energy resource.

The efficiency of solar cells is too high.
[Turn over]

07

FIGURE 11 shows a diver about to dive off a diving board.

FIGURE 11

0.7 .1

Complete the sentences.
Choose answers from the list. [2 marks]

- elastic potential
- gravitational potential
- kinetic
- nuclear

As the diver falls towards the water there is a decrease in her \qquad energy.

As the diver falls towards the water there is an increase in her energy.
[Turn over]

Write down the equation which links kinetic energy (E_{k}), mass (m) and speed (v). [1 mark]

0.7 .3

At the instant the diver hits the water, the kinetic energy of the diver is 5040 J .

The speed of the diver is $12 \mathrm{~m} / \mathrm{s}$.
Calculate the mass of the diver. [3 marks]

Mass = kg

0.7 .4

Most of the kinetic energy of the diver is transferred to the water.

How does this affect the thermal energy of the water? [1 mark]

Tick (\checkmark) ONE box.

The thermal energy decreases.

The thermal energy stays the same.

The thermal energy increases.
[Turn over]

$0 \mid 8$

A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

FIGURE 12 shows the equipment used.
FIGURE 12

0.8 . 1

What is the range of the syringe? [1 mark]
Tick (\checkmark) ONE box.

From 0 to $1 \mathrm{~cm}^{3}$

From 0 to $5 \mathrm{~cm}^{3}$

From 0 to $\mathbf{2 5 ~ c m ~}{ }^{\mathbf{3}}$

The relationship between the pressure and volume of a gas is given by the equation:
pressure \times volume $=$ constant
Complete the sentence. [1 mark]
For this equation to apply, both the mass of gas and the of the gas must stay the same.
[Turn over]

The initial volume of the gas in the syringe was $12 \mathrm{~cm}^{3}$.
The initial pressure of the gas in the syringe was 101000 Pa .

Calculate the constant in the equation below. pressure \times volume $=$ constant
[2 marks]

The teacher pulled the plunger slowly outwards and the gas expanded.

The new volume of the gas was $24 \mathrm{~cm}^{3}$.
Calculate the new pressure in the gas.
The constant has the same value as in Question 08.3, on the opposite page. [3 marks]

New pressure $=$
$\mathrm{Pa} \mathrm{cm}{ }^{3}$
[Turn over]

0.8 .5

Which change occurs when the plunger is pulled slowly outwards? [1 mark]

Tick (\checkmark) ONE box.

The gas particles stop moving.

There are more frequent collisions between the gas particles.

There is more space between the gas particles.

BLANK PAGE

[Turn over]

019

FIGURE 13 shows an electric car being recharged.
FIGURE 13

0.9 .1

The charging station applies a direct potential difference across the battery of the car.

What does 'direct potential difference' mean? [1 mark]

$0 \mid 9.2$

Which equation links energy transferred (E), power (P) and time (t)? [1 mark]

Tick (\checkmark) ONE box.

energy transferred $=\frac{\text { power }}{\text { time }}$

energy transferred $=\frac{\text { time }}{\text { power }}$

energy transferred $=$ power \times time

energy transferred $=$ power $^{2} \times$ time
0.9 .3

The battery in the electric car can store 162000000 J of energy.

The charging station has a power output of 7200 W.
Calculate the time taken to fully recharge the battery from zero. [3 marks]

Time taken $=$
s

0.9 .4

Which equation links current (I), potential difference (V) and resistance (R)? [1 mark]

Tick (\checkmark) ONE box.

$$
I=V \times R
$$

$$
I=V^{2} \times R
$$

$$
R=I \times V
$$

$$
V=I \times R
$$

[Turn over]

The potential difference across the battery is 480 V .
There is a current of 15 A in the circuit connecting the battery to the motor of the electric car.

Calculate the resistance of the motor. [3 marks]

0	9

Different charging systems use different electrical currents.

- Charging system A has a current of 13 A.
- Charging system B has a current of 26 A.
- The potential difference of both charging systems is 230 V .

How does the time taken to recharge a battery using charging system A compare with the time taken using charging system B ? [1 mark]

Tick (\checkmark) ONE box.

Time taken using system A is half the time of system B

Time taken using system A is the same as system B

Time taken using system A is double the time of system B
[Turn over]
\square

$1 \mid 0$

Energy from the Sun is released by nuclear fusion.

10	1

Complete the sentences. [2 marks]
Nuclear fusion is the joining together of

During nuclear fusion the total mass of the particles

\section*{| 1 | 0. |
| :--- | :--- |}

Nuclear fusion of deuterium is difficult to achieve on Earth because of the high temperature needed.

Electricity is used to increase the temperature of 4.0 g of deuterium by $5000000{ }^{\circ} \mathrm{C}$.
specific heat capacity of deuterium $=5200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
Calculate the energy needed to increase the temperature of the deuterium by $50000000^{\circ} \mathrm{C}$.

Use the Physics Equations Sheet. [3 marks]
\qquad
\qquad
\qquad
\qquad

Energy = \qquad J
[Turn over]

1. 0 . 3

The idea of obtaining power from nuclear fusion was investigated using models.

The models were tested before starting to build the first commercial nuclear fusion power station.

Suggest TWO reasons why models were tested. [2 marks]

1
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
\qquad

1. 0.4

Generating electricity using nuclear fusion will have fewer environmental effects than generating electricity using fossil fuels.

Explain ONE environmental effect of generating electricity using fossil fuels. [2 marks]

[Turn over]

$1 \mid 1$

Student A investigated how the current in resistor \mathbf{R} at constant temperature varied with the potential difference across the resistor.

Student A recorded both positive and negative values of current.

FIGURE 14 shows the circuit Student A used.
FIGURE 14

1.1. 1

Describe a method that Student A could use for this investigation. [6 marks]
\qquad
[Turn over]

\qquad
\qquad
\qquad
\qquad
\qquad

\section*{| 1 | 1.2 |
| :--- | :--- |}

Student B repeated the investigation.
During Student B's investigation the temperature of resistor \mathbf{R} increased.

Explain how the increased temperature of resistor R would have affected Student B's results. [2 marks]
[Turn over]

FIGURE 15 shows the scale on a moving coil ammeter at one time in the investigation.

FIGURE 15

\section*{| 1 | 1 |
| :--- | :--- |}

What is the resolution of the moving coil ammeter?
[1 mark]
Resolution $=$ A

1	1.4

Student B replaced the moving coil ammeter with a digital ammeter.

FIGURE 16 shows the reading on the digital ammeter.

FIGURE 16

The digital ammeter has a higher resolution than the moving coil ammeter.

Give ONE other reason why it would have been better to use the digital ammeter throughout this investigation. [1 mark]
\qquad
\qquad

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

IB/M/SB/Jun21/8463/1F/E1

