| Surname | | |--------------------------------|--| | Other Names | | | Centre Number | | | Candidate Number | | | Candidate Signature | | | I declare this is my own work. | | **GCSE** **PHYSICS** F Foundation Tier Paper 1 8463/1F Time allowed: 1 hour 45 minutes At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature. For this paper you must have: - a ruler - a scientific calculator - the Physics Equations Sheet (enclosed). #### **INSTRUCTIONS** - Use black ink or black ball-point pen. Pencil should only be used for drawing. - Answer ALL questions in the spaces provided. - Do not write on blank pages. - If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). - Do all rough work in this book. Cross through any work you do not want to be marked. - In all calculations, show clearly how you work out your answer. #### **INFORMATION** - The maximum mark for this paper is 100. - The marks for questions are shown in brackets. - You are expected to use a calculator where appropriate. - You are reminded of the need for good English and clear presentation in your answers. DO NOT TURN OVER UNTIL TOLD TO DO SO **Answer ALL questions in the spaces provided.** 01.1 A student investigated the three states of matter. The arrangement of particles in the three states of matter are different. On the opposite page, draw ONE line from each particle arrangement to the state of matter. [2 marks] # Particle arrangement State of matter Solid Liquid Gas A large lump of ice was heated and changed state. FIGURE 1 shows how the temperature varied with time. FIGURE 1 | 0 1 . 2 | |---| | Which part of FIGURE 1 shows when the ice was melting? [1 mark] | | Tick (✓) ONE box. | | A | | В | | С | | D | | [Turn over] | | 01.3 | |---| | Which part of FIGURE 1, on page 6, shows when the water was boiling? [1 mark] | | Tick (✓) ONE box. | | A | | В | | C | | D | | 01.4 | | Which property of the water particles changes as the temperature of the water increases? [1 mark] | | Tick (✓) ONE box. | | The kinetic energy of the particles | | The mass of each particle | | The number of particles | | [Turn over] | | |--|----| | Thermal energy = | J | | | | | | | | | | | thermal energy = mass × specific latent heat [2 marks] | | | Use the equation: | | | specific latent heat of fusion of water = 334 000 J/kg | | | Calculate the thermal energy needed to melt 0.250 kg of ice at 0 °C. |)f | | 0 1 . 5 | | | 01.6 | |---| | Complete the sentence. | | Choose the answer from the list. [1 mark] | | • condenses | | • evaporates | | • ionises | | • sublimates | | A substance is heated and changes directly from a solic | | to a gas. The substance | | | 0 2 FIGURE 2 shows part of the National Grid linking a power station to consumers. ## FIGURE 2 Name the parts of FIGURE 2 labelled A and B. [2 marks] 4 m | 2 | |---| | • | | 2 | | 0 | Electricity is transmitted through A at a very high potential difference. What is the advantage of transmitting electricity at a very high potential difference? [1 mark] Tick (✓) ONE box. A high potential difference is safer for consumers. Less thermal energy is transferred to the surroundings. Power transmission is faster. | Charge flow in one second = | _ C | |--|-----| | | | | | | | | | | [2 marks] | | | $charge flow = \frac{energy}{potential difference}$ | | | Use the equation: | | | Calculate the charge flow from the power station in one second. | | | The energy transferred by the power station in one second is 500 000 000 J. | | | The power station generates electricity at a potential difference of 25 000 V. | | | 02.3 | | The electricity supply to a house has a potential difference of 230 V. TABLE 1 shows the current in some appliances in the house. TABLE 1 | Appliance | Current in amps | |------------|-----------------| | Dishwasher | 6.50 | | DVD player | 0.10 | | Lamp | 0.40 | | TV | 0.20 | 0 2 . 4 Calculate the total power of all the appliances in TABLE 1. **Use the equation:** power = potential difference × current [3 marks] | Total power =W | |---| | 02.5 | | Each appliance in TABLE 1 is switched on for 2 hours. | | Which appliance will transfer the most energy? | | Give a reason for your answer. [2 marks] | | Appliance | | | | Reason | | | | | | | | | | 02.6 | | | | |--|-----|--|--| | The average energy transferred from the National G every second for each person in the UK is 600 J. | rid | | | | There are 32 000 000 seconds in one year. | | | | | Calculate the average energy transferred each year from the National Grid for each person in the UK. [2 marks] | Average energy transferred = | J | | | | | | | | | | 12 | | | 0 3 A student investigated the density of different fruits. To determine the density of each fruit, the student measured the volume of each fruit. FIGURE 3 shows the equipment the student could have used. #### FIGURE 3 | 0 3 . 1 | |--| | Describe a method the student could have used to measure the volume of the lime. [4 marks] | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | |---|---------------------|---------------------|----------------------| | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | The student measured the volume of each fruit three times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | times and then calculated a mean value. The three measurements for a grape were 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | 0 3 . 2 | | | | 2.1 cm ³ 2.1 cm ³ 2.4 cm ³ Calculate the mean value. [2 marks] | | | | | Calculate the mean value. [2 marks] | The three | measureme | nts for a grape were | | | 2.1 cm ³ | 2.1 cm ³ | 2.4 cm ³ | | Moon value = | Calculate t | the mean va | lue. [2 marks] | | | | | | | Moon value = | | | | | Moon value = | | | | | | Mean valu | 0 = | cm | | 03.3 | |--| | What are the advantages of taking three measurements and calculating a mean value? [2 marks] | | Tick (✓) TWO boxes. | | Allows anomalous results to be identified and ignored. | | Improves the resolution of the volume measurement. | | Increases the precision of the measured volumes. | | Reduces the effect of random errors when using the equipment. | | Stops all types of error when using the equipment. | | [Turn over] | | 03.4 | | |---|-------------------| | The mass of an apple was 84.0 g. | | | The volume of the apple was 120 cm ³ . | | | Calculate the density of the apple. | | | Give your answer in g/cm ³ . | | | Use the equation: | | | density = $\frac{\text{mass}}{\text{volume}}$ | | | [2 marks] | | | | | | | | | | | | | | | Density = | g/cm ³ | | | | | | 10 | 0 4 A student investigated how the current in a circuit varied with the number of lamps connected in parallel in the circuit. FIGURE 4 shows the circuit with three identical lamps connected in parallel. #### FIGURE 4 #### FIGURE 5 shows the results. #### FIGURE 5 ## Current in amps | 04.1 | |---| | Complete the sentences. | | Choose answers from the list. | | Each answer can be used once, more than once or not at all. [3 marks] | | • decreased | | • stayed the same | | • increased | | As the number of lamps increased, the current | | _ | | | | As the number of lamps increased, the total resistance | | As the number of lamps increased, the total resistance of the circuit | | • | | of the circuit | | of the circuit As the number of lamps increased, the potential | | of the circuit As the number of lamps increased, the potential | | 0 4 . 2 | |---| | When there were three lamps in the circuit the ammeter reading kept changing between 0.35 A and 0.36 A. | | What type of error would this lead to? [1 mark] | | Tick (✓) ONE box. | | Random error | | Systematic error | | Zero error | FIGURE 6, on the opposite page, shows a circuit with five ammeters and three identical lamps. FIGURE 6 04.3 Complete TABLE 2 to show the readings on ammeters A_2 and A_5 . [2 marks] **TABLE 2** | Ammeter | A ₁ | A ₂ | A ₃ | A ₄ | A ₅ | |-----------------|----------------|----------------|----------------|----------------|----------------| | Current in amps | 0.36 | | 0.12 | 0.12 | | | 04.4 | | |---|---| | The resistance of one lamp is 15 Ω . | | | The current in the lamp is 0.12 A. | | | Calculate the power output of the lamp. | | | Use the equation: | | | power = $(current)^2 \times resistance$ | | | [2 marks] | | | | | | | | | | | | | | | Power = | w | | | | | | 8 | | 0 5 | |--| | Atoms of different elements have different properties. | | 05.1 | | Which of the following is the same for all atoms of the same element? [1 mark] | | Tick (✓) ONE box. | | Atomic number | | Mass number | | Neutron number | | 05.2 | | Which of the following is different for isotopes of the same element? [1 mark] | | Tick (✓) ONE box. | | Number of electrons | | Number of neutrons | | Number of protons | | [Turn over] | 0 5.3 A nucleus emits radiation. FIGURE 7 shows how the mass number and the atomic number change. The nucleus is labelled D. #### FIGURE 7 #### Mass number Which type of radiation is emitted when nucleus D decays? [1 mark] | Tick (✓ |) ONE box. | | | |---------|------------|--|--| | | Alpha | | | | | Beta | | | | | Neutron | | | | [Turn c | over] | | | 0 5.4 Nucleus E also emits radiation. FIGURE 8 shows how the mass number and the atomic number change for nucleus E. #### FIGURE 8 ### Mass number **Atomic number** | Which type | of radiation is | emitted when | nucleus E | |------------|-----------------|--------------|-----------| | decays? [1 | mark] | | | | Tick (✓ | ONE box. | | | |-------------|----------|--|--| | | Alpha | | | | | Beta | | | | | Neutron | | | | [Turn over] | | | | Beta radiation can be used to monitor the thickness of paper during production. FIGURE 9 shows how the radiation is used. # FIGURE 9 The computer uses information from the radiation detector to change the size of the gap between the rollers. | L | 7 | |---|---| | | • | | | 5 | | | 0 | Complete the sentences. Choose answers from the list. Each answer can be used once, more than once or not at all. - decrease - stay the same - increase The thickness of the paper between the beta source and the detector increases. [2 marks] The reading on the detector will This is because the amount of radiation absorbed by the paper will 0 5 6 All radioactive elements have a half-life. What is meant by 'half-life'? [1 mark] Tick (✓) ONE box. The time it takes for all the nuclei in a radioactive sample to split in half. The time it takes for the count rate of a radioactive sample to halve. The time it takes for the radiation to travel half of its range in air. ∞ Why should the radiation source used in FIGURE 9, on page 38, have a long half-life? [1 mark] Tick (✓) ONE box. So the activity of the source is approximately constant. So the amount of radiation decreases quickly. So the radiation has a long range in air. FIGURE 10 shows a house with a solar power system. The solar cells generate electricity. When the electricity generated by the solar cells is not needed, the energy is stored in a large battery. #### FIGURE 10 | 06.1 | |--| | The solar cells on the roof of the house always face in the same direction. | | Explain ONE disadvantage caused by the solar cells only facing in one direction. [2 marks] | | | | 06.2 | | |---|----| | The mean current from the solar cells to the battery is 3.5 A. | | | Calculate the charge flow from the solar cells to the battery in 3600 seconds. | | | Use the equation: | | | charge flow = current × time [2 marks] | | | | | | | | | | | | Charge flow = | _C | | 06.3 | | | Write down the equation which links efficiency, total power input and useful power output. [1 mark] | | | | | | | | | 06.4 | |--| | At one time in the day, the total power input to the solar cells was 7500 W. | | The efficiency of the solar cells was 0.16 | | Calculate the useful power output of the solar cells. [3 marks] | | | | | | | | | | | | Useful power output =W | | [Turn over] | | 06.5 | | |----------|---| | | sted energy that is NOT usefully transferred by ar cells is dissipated. | | What ha | appens to energy that has been dissipated? | | Tick (✓) | ONE box. | | | The energy becomes less useful. | | | The energy is destroyed. | | | The energy is used to generate electricity. | | 06.6 | | | |--|-------|--| | Why is it unlikely that all the UK's electricity needs could be met by solar power systems? [1 mark] | | | | Tick (✓) ONE box. | | | | A very large area would need to be covered with solar cells. | | | | Solar power is a non-renewable energy resource. | | | | The efficiency of solar cells is too high. | | | | [Turn over] |
0 | | # FIGURE 11 shows a diver about to dive off a diving board. ## FIGURE 11 | 07.1 | |---| | Complete the sentences. | | Choose answers from the list. [2 marks] | | elastic potential | | • gravitational potential | | • kinetic | | • nuclear | | As the diver falls towards the water there is a decrease | | in her energy. | | As the diver falls towards the water there is an increase | | in her energy. | | | | 07.2 | | |--|--| | Write down the equation which links kinetic energy (E_k) , mass (m) and speed (v) . [1 mark] | | | | | | 07.3 | | | At the instant the diver hits the water, the kinetic energy of the diver is 5040 J. | | | The speed of the diver is 12 m/s. | | | Calculate the mass of the diver. [3 marks] | | | | | | | | | | | | | | | | | | Mass = kg | | | 07.4 | | | |--|--|--| | Most of the kinetic energy of the diver is transferred to the water. | | | | How does this affect the thermal energy of the water? [1 mark] | | | | Tick (✓) ONE box. | | | | The thermal energy decreases. | | | | The thermal energy stays the same. | | | | The thermal energy increases. | | | | [Turn over] | | | A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas. FIGURE 12 shows the equipment used. FIGURE 12 | 08.1 | |---| | What is the range of the syringe? [1 mark] | | Tick (✓) ONE box. | | From 0 to 1 cm ³ | | From 0 to 5 cm ³ | | From 0 to 25 cm ³ | | 08.2 | | The relationship between the pressure and volume of a gas is given by the equation: | | pressure × volume = constant | | Complete the sentence. [1 mark] | | For this equation to apply, both the mass of gas and the | | of the gas must | | stay the same. | | [Turn over] | | Constant = Pa cm ³ | |---| | | | | | | | pressure × volume = constant [2 marks] | | Calculate the constant in the equation below. | | The initial pressure of the gas in the syringe was 101 000 Pa. | | The initial volume of the gas in the syringe was 12 cm ³ . | | 08.3 | | New pressure =Pa cm ³ | |--| | | | | | | | | | | | | | on the opposite page. [3 marks] | | The constant has the same value as in Question 08.3, | | Calculate the new pressure in the gas. | | The new volume of the gas was 24 cm ³ . | | The teacher pulled the plunger slowly outwards and the gas expanded. | | 0 8 . 4 | | 08. | 5 | | |---------|---|-----| | | change occurs when the plunger is pulled slowds? [1 mark] | wly | | Tick (✓ | ONE box. | | | | The gas particles stop moving. | | | | There are more frequent collisions between t gas particles. | he | | | There is more space between the gas particle | es. | | | | | | | | 8 | # **BLANK PAGE** FIGURE 13 shows an electric car being recharged. # FIGURE 13 # **Charging station** **Power cable** | 09.1 | |---| | The charging station applies a direct potential difference across the battery of the car. | | What does 'direct potential difference' mean? [1 mark] | | | | | | | | | | | | 09.2 | | Which equation links energy transferred (E) , power (P) and time (t) ? [1 mark] | | Tick (✓) ONE box. | | energy transferred = $\frac{\text{power}}{\text{time}}$ | | energy transferred = $\frac{\text{time}}{\text{power}}$ | | energy transferred = power × time | | energy transferred = power ² × time | | [Turn over] | | 09.3 | |---| | The battery in the electric car can store 162 000 000 J of energy. | | The charging station has a power output of 7200 W. | | Calculate the time taken to fully recharge the battery from zero. [3 marks] | | | | | | | | | | | | | | Time taken =s | Which equation links current (I), potential difference (V) and resistance (R)? [1 mark] Tick (✓) ONE box. $$I = V^2 \times R$$ $$R = I \times V$$ $$V = I \times R$$ | Resistance = | |--| | | | | | | | | | | | | | | | Calculate the resistance of the motor. [3 marks] | | There is a current of 15 A in the circuit connecting the battery to the motor of the electric car. | | The potential difference across the battery is 480 V. | | 09.5 | | 09.6 | |---| | Different charging systems use different electrical currents. | | Charging system A has a current of 13 A. | | Charging system B has a current of 26 A. | | The potential difference of both charging systems
is 230 V. | | How does the time taken to recharge a battery using charging system A compare with the time taken using charging system B? [1 mark] | | Tick (✓) ONE box. | | Time taken using system A is half the time of system B | | Time taken using system A is the same as system B | | Time taken using system A is double the time of system B | | 10 | |---| | Energy from the Sun is released by nuclear fusion. | | 10.1 | | Complete the sentences. [2 marks] | | Nuclear fusion is the joining together of | | - | | During nuclear fusion the total mass of the particles | | | | 10.2 | |--| | Nuclear fusion of deuterium is difficult to achieve on Earth because of the high temperature needed. | | Electricity is used to increase the temperature of 4.0 g of deuterium by 50 000 000 °C. | | specific heat capacity of deuterium = 5200 J/kg °C | | Calculate the energy needed to increase the temperature of the deuterium by 50 000 000 °C. | | Use the Physics Equations Sheet. [3 marks] | | | | | | | | | | | | | | | | Energy = J | | [Turn over] | | [Turn over] | 9 | |--|---| Explain ONE environmental effect of generating electricity using fossil fuels. [2 marks] | | | Generating electricity using nuclear fusion will have fewer environmental effects than generating electric using fossil fuels. | | | 10.4 | | Student A investigated how the current in resistor R at constant temperature varied with the potential difference across the resistor. Student A recorded both positive and negative values of current. FIGURE 14 shows the circuit Student A used. #### FIGURE 14 | 111.1 | | |--|--| | Describe a method that Student A could use for this investigation. [6 marks] | 11.2 | |--| | Student B repeated the investigation. | | During Student B's investigation the temperature of resistor R increased. | | Explain how the increased temperature of resistor R would have affected Student B's results. [2 marks] | | | | | | | | | | | | | | [Turn over] | FIGURE 15 shows the scale on a moving coil ammeter at one time in the investigation. ### FIGURE 15 1 1 . 3 What is the resolution of the moving coil ammeter? [1 mark] Resolution = A | 1 | 1 | | 1 | |---|---|---|---| | | | • | _ | Student B replaced the moving coil ammeter with a digital ammeter. FIGURE 16 shows the reading on the digital ammeter. #### FIGURE 16 The digital ammeter has a higher resolution than the moving coil ammeter. Give ONE other reason why it would have been better to use the digital ammeter throughout this investigation. [1 mark] | FN | JD | OF | OI | JFS | TIO | NS | |----|----|---------------------------|----|------------|--------------------------|----| | | 10 | $\mathbf{O}_{\mathbf{I}}$ | w | - | $\cdot \cdot \cdot \sim$ | | 10 | Additional page, if required. Write the question numbers in the left-hand margin. | | | | | | |--|--|--|--|--|--| Additional page, if required. Write the question numbers in the left-hand n | | | | | |--|--|--|--|--| #### **BLANK PAGE** | For Examiner's Use | | | |--------------------|------|--| | Question | Mark | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | 11 | | | | TOTAL | | | #### **Copyright information** For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. Copyright © 2021 AQA and its licensors. All rights reserved. #### IB/M/SB/Jun21/8463/1F/E1