Surname $\qquad$
Other Names

Centre Number
Candidate Number $\qquad$
Candidate Signature

I declare this is my own work.

## GCSE

COMBINED SCIENCE: TRILOGY
Foundation Tier
Biology Paper 1F
8464/B/1F

Time allowed: 1 hour 15 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator.


## INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.


## INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

01
Cells are the building blocks of life.

| 0 | 1 | 1 |
| :--- | :--- | :--- |

On the opposite page, draw ONE line from each type of organism to the diagram of one of its cells. [3 marks]

Type of organism

## Animal



## Bacterium

## Plant


[Turn over]
0.1 .2

Cells contain structures. These structures have different functions.

Draw ONE line from each function to the correct structure. [3 marks]

## FUNCTION

Cell membrane
Contains genetic information

## Cell wall

Controls what enters and leaves a cell

Chloroplast

## Where photosynthesis happens

011.3

Chemicals are produced in cells.
Complete the sentences.
Choose answers from the list. [4 marks]

- cellulose
- DNA
- glycogen
- starch
- urea

A chemical excreted by animals is $\qquad$ -

A chemical stored in animal cells is $\qquad$ .

A chemical stored in plant cells is $\qquad$ .

A chemical that strengthens plant cell walls is
$\qquad$ .
[Turn over]

FIGURE 1 shows a diagram of muscle cells.
FIGURE 1


Mitochondria

| 0 | 1.4 |
| :--- | :--- |

Give ONE function of muscle cells. [1 mark]

| 0 | 1 |
| :--- | :--- |

Explain how muscle cells are adapted for their function.
Use FIGURE 1. [2 marks]
$\qquad$


## 0.1 .6

One muscle cell was 0.05 mm wide.
When viewed using a microscope the image of the muscle cell was 2 mm wide.

Calculate the magnification used to view the cell.
Use the equation: magnification $=\frac{\text { width of image }}{\text { width of real cell }}$
[2 marks]
$\qquad$
$\qquad$

Magnification $=\times$
[Turn over]


02
Antibiotics are used to treat bacterial infections.
0.2. 1

Which substance is used as an antibiotic? [1 mark]

Tick $(\checkmark)$ ONE box.


Aspirin


Digitalis


Penicillin

Gonorrhoea and chlamydia are two sexually transmitted infections.

Gonorrhoea and chlamydia infections can be treated with antibiotics.
0.2 . 2

Give ONE symptom of gonorrhoea. [1 mark]
[Turn over]

A scientist investigated which antibiotics were most effective at treating gonorrhoea and chlamydia.

This is the method used.

1. Grow gonorrhoea bacteria in a Petri dish.
2. Prepare four different antibiotic solutions, $A, B, C$ and $D$, of the same concentration.
3. Cut four filter paper discs to the same size.
4. Soak each paper disc in a different antibiotic solution.
5. Put the four paper discs into the Petri dish.
6. Repeat steps 3 to 5 using a Petri dish with chlamydia bacteria growing in it.
7. Keep both Petri dishes at $25^{\circ} \mathrm{C}$ for 3 days.

| 0 | 2 |
| :--- | :--- |

Give TWO control variables used in this investigation. [2 marks]

1 $\qquad$
$\qquad$

## 2

[Turn over]
FIGURE 2 shows the results.
A clear area around a paper disc is where the antibiotic has killed the bacteria.
FIGURE 2
Petri dish containing
chlamydia bacteria

Petri dish containing



| 0.2 .4 |
| :--- |
| Which an |

Which antibiotic did NOT kill either type of bacterium? [1 mark]
Tick ( $\checkmark$ ) ONE box.
A
■
0
0
[Turn over]

6 0.2 . Which antibiotic would be the most effective to treat a person who had both
gonorrhoea AND chlamydia infections? [1 mark]
Tick ( $\checkmark$ ) ONE box.
《
■
0 0
-
[Turn over]
0.2. 7

Antibiotics CANNOT be used to treat HIV infections.
Suggest ONE reason why. [1 mark]
$\qquad$
$\qquad$

Fungi can cause an infection of the fingernails and toenails.

Fungal nail infections can spread from one person to another person.

\section*{| 0 | 2 |
| :--- | :--- |}

Some people go to nail salons to have their nails shaped and painted.

Suggest ONE way workers in nail salons can reduce the risk of infections being spread. [1 mark]

0.2. 9

Suggest ONE reason why fungal infection of toenails is more common than fungal infection of fingernails.
[1 mark]
[Turn over]

013
Anaerobic respiration in yeast is called fermentation.
The equation for fermentation is:
glucose $\longrightarrow$ ethanol + carbon dioxide

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |}

How does the equation show that fermentation is an ANAEROBIC reaction? [1 mark]

Fermentation in yeast is used in the manufacture of beer, wine and bread.

\section*{| 0 | 3 |
| :--- | :--- |}

Why is fermentation used when making beer and wine? [1 mark]
$\qquad$
$\qquad$

| 0 | 3 |
| :--- | :--- |

Explain why fermentation is used when making bread.
[2 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
[Turn over]

A student investigated fermentation in yeast.
FIGURE 3 shows the apparatus.
FIGURE 3


This is the method used.

1. Mix yeast with sugar solution in a flask.
2. Put the flask in a water bath at $35^{\circ} \mathrm{C}$.
3. After 10 minutes attach a gas syringe to the flask.
4. Record the volume of carbon dioxide collected every 5 minutes for 1 hour.
003.44
[^0]
## 24

0.3 . 5

Why did the student wait 10 minutes before attaching the gas syringe? [1 mark]

## Tick $(\checkmark)$ ONE box.



To allow time for the mixture to reach $35^{\circ} \mathrm{C}$


To allow time for the sugar to dissolve

To allow time to draw a results table

## BLANK PAGE

[Turn over]

FIGURE 4, on the opposite page, shows the results.
$A$ and $B$ are different parts of the graph in FIGURE 4.
Draw ONE line from each part of the graph to the description of the reaction. [2 marks]
Part of the graph


FIGURE 4
Volume of carbon dioxide
collected in $\mathbf{c m}^{3}$

$|||||||||||||||||\mid$ [Turn over]

The equation for fermentation is repeated here.
glucose $\longrightarrow$ ethanol + carbon dioxide

| 0 | 3 |
| :--- | :--- |

Suggest ONE reason why fermentation in the flask stopped. [1 mark]

\section*{| 0 | 3. |
| :--- | :--- |}

Fermentation is controlled by enzymes.
The investigation was repeated at $2^{\circ} \mathrm{C}$ and at $75^{\circ} \mathrm{C}$.
No carbon dioxide was produced at either of these temperatures.

Suggest why NO carbon dioxide was produced at $2{ }^{\circ} \mathrm{C}$ or at $75{ }^{\circ} \mathrm{C}$. [2 marks]

Reason at $2{ }^{\circ} \mathrm{C}$ $\qquad$
$\qquad$
$\qquad$


Reason at $75{ }^{\circ} \mathrm{C}$
0.3. 9

Anaerobic respiration also happens in animal cells.
Complete the equation for anaerobic respiration in animal cells.

Choose answers from the list. [2 marks]

- carbon dioxide
- ethanol
- glucose
- lactic acid
- water
[Turn over]


## $0 \mid 4$

This question is about plant transport systems.

| 0 | 4 | 1 |
| :--- | :--- | :--- |

Which ORGAN in a plant absorbs water from the soil? [1 mark]

## 014.2

The concentration of nitrate ions in the soil is lower than the concentration of nitrate ions inside a plant.

How would the nitrate ions move from the soil into the cells of this plant? [1 mark]

Tick $(\checkmark)$ ONE box.


By active transport


By diffusion


By osmosis

Dissolved sugars are transported in the phloem.

| 0 | 4 |
| :--- | :--- |

What is the name of the process that moves dissolved sugars through the phloem? [1 mark]

Tick $(\checkmark)$ ONE box.


Evaporation



Osmosis


\section*{| 0 | 4 |
| :--- | :--- | :--- |}

Give ONE use of sugars in a plant. [1 mark]
[Turn over]


Stomata are openings on the surface of a leaf.
Stomata allow gases to move into and out of a leaf.
FIGURE 5 shows the surface of a leaf.

## FIGURE 5


0.4 . 5

What is cell $X$ ? [1 mark]
Tick $(\checkmark)$ ONE box.


## Guard cell



Meristem cell


Palisade cell

| 0 | 4 |
| :--- | :--- |

Why do the stomata open during the day? [1 mark]

Tick ( $\sqrt{ }$ ) ONE box.


To allow carbon dioxide in


To allow nitrogen in


To allow oxygen in
[Turn over]


## REPEAT OF FIGURE 5



| 0 | 4 |
| :--- | :--- |

The area of the leaf shown in FIGURE 5 is $0.25 \mathrm{~mm}^{2}$.
Calculate the number of stomata per $\mathrm{mm}^{2}$ for the leaf in FIGURE 5.

Use the equation:
number of stomata per $\mathrm{mm}^{\mathbf{2}}=\frac{\text { number of stomata }}{\text { area in } \mathrm{mm}^{2}}$
[2 marks]
$\qquad$
$\qquad$
$\qquad$

Number of stomata per $\mathrm{mm}^{\mathbf{2}}=$
[Turn over]

A student investigated the number of stomata per $\mathrm{mm}^{2}$ on the upper and lower surfaces of leaves.

The leaves were taken from the same plant.
TABLE 1 shows the results.

## TABLE 1

| Leaf | Number of stomata per $\mathrm{mm}^{\mathbf{2}}$ |  |
| :--- | :--- | :--- |
|  | Upper surface | Lower surface |
| 1 | 0 | 37 |
| 2 | 1 | 36 |
| 3 | 2 | 30 |
| 4 | 1 | 32 |
| 5 | 1 | 35 |
| Mean | 1 | X |


| 0 | 4 |
| :--- | :--- |

Calculate mean value $X$ in TABLE 1. [2 marks]
$\qquad$
$\qquad$

$X=$

\section*{| 0 | 4 |
| :--- | :--- | :--- |}

Water vapour is lost through stomata.
Explain the difference in the number of stomata on the upper and lower surfaces of the leaves.

## Use TABLE 1. [3 marks]

## [Turn over]



05
Plants absorb light for photosynthesis.
0.5 . 1

Which is the equation for photosynthesis? [1 mark]
Tick $(\checkmark)$ ONE box.


$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$



$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$


$6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{CO}_{2}$


$$
6 \mathrm{O}_{2}+6 \mathrm{CO}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}
$$

## BLANK PAGE

[Turn over]
A student investigated the effect of light intensity on the rate of photosynthesis.
FIGURE 6 shows the apparatus.
Bubbles of gas
Pondweed in water

30
$\begin{array}{lll}0 & 10 & 20 \\ & \text { Distance from lamp in cm }\end{array}$

This is the method used.

1. Set up the apparatus as shown in FIGURE 6.
2. Place the pondweed 10 cm away from the lamp.
3. Switch on the lamp.
4. Record the number of bubbles of gas produced in 5 minutes.
5. Repeat steps 2 to 4 with the pondweed at different distances from the lamp.
[Turn over]
[0]5. 2
What was
What was the independent variable in this investigation? [1 mark]

## Tick ( $\checkmark$ ) ONE box.


[Turn over]

The lamp gets warm when it is on. This causes the temperature of the water to increase.

\section*{| 0 | 5 |
| :--- | :--- |}

Explain how an increase in temperature would affect the results of this investigation. [2 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| 0 | 5. |
| :--- | :--- | :--- |

Suggest ONE way the investigation could be improved so the temperature of the water does NOT increase. [1 mark]
0.5 . 5

Suggest TWO improvements to the investigation so the results would be more valid.

Do NOT refer to controlling the temperature of the water. [2 marks]

1 $\qquad$
$\qquad$
$\qquad$
2 $\qquad$
[Turn over]

TABLE 2 shows the results.

## TABLE 2

| Distance of pondweed <br> from the lamp in cm | Number of bubbles of gas <br> produced in 5 minutes |
| :--- | :--- |
| 10 | 120 |
| 20 | 56 |
| 30 | 31 |
| 40 | 16 |
| 50 | 10 |


\section*{| 0 | 5 |
| :--- | :--- |}

Calculate the rate of photosynthesis when the pondweed was 40 cm from the lamp.

Give the rate of photosynthesis as the number of bubbles of gas produced per minute. [1 mark]
$\qquad$
$\qquad$

Rate $=$ $\qquad$ bubbles of gas produced per minute

## 0.5 . 7

Give ONE conclusion that can be made from TABLE 2. [1 mark]
$\qquad$
$\qquad$
$\qquad$
[Turn over]

## REPEAT OF TABLE 2

| Distance of pondweed <br> from the lamp in cm | Number of bubbles of gas <br> produced in 5 minutes |
| :--- | :--- |
| 10 | 120 |
| 20 | 56 |
| 30 | 31 |
| 40 | 16 |
| 50 | 10 |


| 0 | 5 |
| :--- | :--- |

Plot the data from TABLE 2 on FIGURE 7, on the opposite page.

Draw a line of best fit. [3 marks]

\section*{| 0 | 5. |
| :--- | :--- |}

Predict the number of bubbles that would be produced in 5 minutes if the pondweed was 60 cm from the lamp.

## Use FIGURE 7. [1 mark]

Number of bubbles produced in 5 minutes =

## FIGURE 7




## $0 \mid 6$

Describe how to test a sample of food for protein, starch and sugar.

Give the colours that would be seen if the food sample contained protein, starch and sugar. [6 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$

## BLANK PAGE

| For Examiner's Use |  |
| :---: | :---: |
| Question | Mark |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| TOTAL |  |

## Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

## IB/M/CD/Jun21/8464/B/1F/E2




[^0]:    What volume of carbon dioxide has been collected in the gas syringe in
    $\mathrm{cm}^{3}$

