AQA
Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
GCSE
COMBINED SCIENCE: TRILOGY
Foundation Tier
Physics Paper 2F 8464/P/2F

Time allowed: 1 hour 15 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO
DO SO

4

BLANK PAGE

Forces are either contact forces or non-contact forces.

0
Which of the following is a non-contact force? [1 mark]

Tick (\checkmark) ONE box.

Electrostatic force

Friction force

Tension force
[Turn over]

6

FIGURE 1 shows a person standing on some bathroom scales.

FIGURE 1

The person exerts a downward force on the scales and the scales exert an upward force on the person.

$0 \mid 1$ 2

Which sentence about the forces is true? [1 mark]

Tick (\checkmark) ONE box.

The downward force is less than the upward force.

The downward force is the same size as the upward force.

The downward force is greater than the upward force.

[Turn over]

What is the name of the upward force on the person? [1 mark]

Tick (\checkmark) ONE box.

Air resistance

Normal contact force

Weight

The person on the scales has a mass of 55 kg .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the weight of the person.
Use the equation:
weight $=$
mass \times gravitational field strength
[2 marks]

Weight =
[Turn over]

\section*{| 0 | 1 | 5 |
| :--- | :--- | :--- |}

The gravitational field strength is NOT the same at all points on the surface of the Earth.

The gravitational field strength is weakest at the equator.

A person travelled from the UK to the equator.

What happened to the weight of the person? [1 mark]

Tick (\checkmark) ONE box.

The weight decreased.

The weight remained the same.

The weight increased.

BLANK PAGE

[Turn over]

FIGURE 2 shows the forces acting on a person.

The person is about to jump.

FIGURE 2
1100 N

$0 \mid 1$ 6

The arrow representing the weight of the person is drawn from point X.

What is the name given to point X ? [1 mark]

Tick (\checkmark) ONE box.

Centre of force

Centre of mass

Centre of weight
[Turn over]

REPEAT OF FIGURE 2
1100 N

Determine the size of the resultant force on the person in FIGURE 2. [1 mark]

Resultant force $=$

$0 \mid 2$

Magnets attract some metals.

| 0 | 2 |
| :--- | :--- | :--- |

Which diagram, below and on the opposite page, shows the correct magnetic field pattern for a bar magnet? [1 mark]
Tick (\checkmark) ONE box.

[Turn over]

FIGURE 3 shows an iron bar near a permanent magnet.

FIGURE 3
Permanent magnet

The iron bar becomes an induced magnet.

0	2

Label the poles on the iron bar. [1 mark]

\section*{| 0 | 2. |
| :--- | :--- |}

The magnet is turned around so that the north pole is closest to the iron bar.

Which statement about the iron bar is true? [1 mark]

Tick (\checkmark) ONE box.

The iron bar does not experience a magnetic force.

The iron bar experiences a magnetic force of attraction.

The iron bar experiences a magnetic force of repulsion.
[Turn over]

20

FIGURE 4 shows an electromagnet being used to separate pieces of different types of metal on a conveyor belt.

FIGURE 4
Pieces of metal $\xrightarrow{\text { Electromagnet }} \xrightarrow{\text { Contan }}$

\section*{| 0 | 2 |
| :--- | :--- | . 4}

Which TWO of the following types of metal would be attracted to the electromagnet? [2 marks]

Tick (\checkmark) TWO boxes.
Aluminium

Copper

Magnesium

Nickel

Steel

[Turn over]

22

0.2 .5

What is an advantage of using an electromagnet instead of a permanent magnet to separate the types of metal? [1 mark]

Tick (\checkmark) ONE box.

An electromagnet attracts more types of metal than a permanent magnet.

An electromagnet can be switched on and off.

An electromagnet transfers less energy than a permanent magnet.

23

BLANK PAGE

[Turn over]

FIGURE 5 shows a simple electromagnet.

FIGURE 5

25

02 . 6

What is the purpose of the iron nail inside the coil of wire? [1 mark]

Tick (\checkmark) ONE box.
\square The iron nail makes the magnetic field stronger.
\square The iron nail reduces the magnetic field to zero.

[Turn over]

26

BLANK PAGE

27

0	2

Which of the following would increase the strength of the electromagnet? [1 mark]

Tick (\checkmark) ONE box.

Use a greater current.

Use a shorter nail.

Use a thinner wire.
[Turn over]

28

$0 \mid 3$

The stopping distance of a car is the sum of the thinking distance and the braking distance.

29

The thinking distance is affected by the reaction time of the driver.

Which TWO of the following can affect the reaction time of the driver? [2 marks]

Tick (\checkmark) TWO boxes.
Damaged brakes

Taking drugs

Tiredness

Wet roads

Worn tyres
[Turn over]

Scientists measured the reaction time for drivers of different ages.

FIGURE 6 shows the results.
FIGURE 6
Mean
reaction
time in
seconds

At what age did the drivers have the lowest mean reaction time? [1 mark] Age =
years

\section*{| 0 | 3 |
| :--- | :--- | :--- |}

What was the lowest mean reaction time? [1 mark]

\qquad
seconds
[Turn over]

The braking distance of a car is the distance travelled between the driver applying the brakes and the car stopping.

0	3.

Complete the sentences.
Choose answers from the list below.
Each answer may be used once, more than once or not at all. [2 marks]
decreases
stays the same increases

When the brakes are applied, the kinetic energy of the car

The temperature of the brakes

BLANK PAGE

[Turn over]

\section*{| 0 | 3 |
| :--- | :--- |}

A car is travelling at a speed of $12 \mathrm{~m} / \mathrm{s}$.
The driver applies the brakes and the car decelerates at a constant $3.0 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the braking distance of the car.
Use the equation:
braking distance $=\frac{(\text { speed })^{2}}{2 \times \text { deceleration }}$
Choose the unit from the list below. [3 marks]

- m
- kg
- \mathbf{S}

Braking distance =

Unit

0] 3.6

To pass the UK driving test, people must know the typical stopping distance of a car at certain speeds.

Suggest ONE reason why. [1 mark]
\qquad
[Turn over]

36

04

FIGURE 7, on page 38, shows a ripple tank.

The wooden bar vibrates up and down producing waves on the water.

The light source produces shadows of the water waves on the screen.

BLANK PAGE

[Turn over]

FIGURE 7

Support

Wooden bar suspended from elastic bands

\section*{| 0 | 4 |
| :--- | :--- |}

Describe how the student can measure the frequency and wavelength of the waves.

You should refer to any equipment the student needs in your answer. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

40
A student measured the frequency and
wavelength of the waves produced. TABLE 1 shows some of the results.

TABLE 1

Reading	1	2	3	Mean
Frequency in hertz	12.8	12.4	12.3	X

\section*{| 0 | 4 |
| :--- | :--- |}

Calculate value X in TABLE 1. [1 mark]
$X=$
Hz

0	4	3

Why is it a good idea to take repeat readings and then calculate a mean? [1 mark]

Tick (\checkmark) ONE box.

To reduce the effect of random errors.

To reduce the effect of systematic errors.

To reduce the effect of zero errors.
[Turn over]

42

\section*{| 0 | 4 | 4 |
| :--- | :--- | :--- |}

The student changed the frequency of the waves in the ripple tank to 20 Hz .

Calculate the period of the waves.
Use the equation:
period $=\frac{1}{\text { frequency }}$
[2 marks]
\qquad
\qquad
\qquad

Period =
S

\section*{| 0 | 4 | 5 |
| :--- | :--- | :--- |}

At a frequency of 20 Hz the wavelength of the waves was 0.012 m .

Calculate the wave speed.
Use the equation:
wave speed $=$ frequency \times wavelength
[2 marks]

Wave speed =
m / s
[Turn over]

Scientists are developing a rocket aeroplane designed to travel much faster than jet aeroplanes.

0	5

The rocket aeroplane must accelerate along a runway to take off.

What would happen to the air resistance acting on the rocket aeroplane as it accelerates? [1 mark]

0	5

An upward force called lift will act on the wings of the rocket aeroplane when it moves.

Complete the sentence.
Choose the answer from the list below. [1 mark]

- less than
- the same as
- greater than

As the rocket aeroplane starts to accelerate along the runway, the lift force on the wings will be the weight of the rocket aeroplane.
[Turn over]

0	5	

During the first 14 seconds the average speed of the rocket aeroplane on the runway will be $35 \mathrm{~m} / \mathrm{s}$.

Calculate the distance that the rocket aeroplane will travel during the first 14 seconds.

Use the equation:
distance travelled $=$ average speed \times time [2 marks]

Distance travelled =

47

\section*{| 0 | 5 | 4 |
| :--- | :--- | :--- |}

Write down the equation which links distance (s), force (F) and work done (W). [1 mark]
[Turn over]

48

\section*{| 0 | 5 | 5 |
| :--- | :--- | :--- |}

When the rocket aeroplane travels a distance of 270 m on the runway the engines will do 54000000 J of work.

Calculate the average force exerted by the engines. [3 marks]

Average force =

BLANK PAGE

[Turn over]

\section*{| 0 | 5 |
| :--- | :--- |}

The rocket aeroplane will fly at a greater height than a jet aeroplane.

The height that an aeroplane flies at affects the radiation dose a passenger will receive each hour.

TABLE 2 shows the speed of each aeroplane and the radiation dose a passenger will receive each hour.

TABLE 2

Aeroplane	Speed in metres per second	Radiation dose each hour in millisieverts
Rocket aeroplane	8000	0.006
Jet aeroplane	250	0.003

Exposure to ionising radiation has risks and possible consequences.

Evaluate the risks and possible consequences of flying in a rocket aeroplane and in a jet aeroplane.

Assume the same journey is made in each aeroplane.

Use values from TABLE 2. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

52
\qquad

53

54

$0 \mid 6$

FIGURE 8 shows a stretched spring.
The spring is elastically deformed.
FIGURE 8

55

\section*{| 0 | 6 | 1 |
| :--- | :--- | :--- |}

What is meant by 'elastically deformed'? [1 mark]

Tick (\checkmark) ONE box.

As the force on the spring increases the length of the spring increases.

Only a very small force is needed to stretch the spring.

The force on the spring causes it to change shape.

The spring will return to its original length when the force is removed.
[Turn over]

56

06.2

Describe a method to determine the extension of the spring. [2 marks]

\qquad
\qquad

57

\section*{| 0 | 6 | 3 |
| :--- | :--- | :--- |}

The extension of the spring is $\mathbf{8 0} \mathbf{~ m m}$.
spring constant $=40 \mathrm{~N} / \mathrm{m}$
Calculate the elastic potential energy of the spring.

Use the Physics Equations Sheet. [3 marks]

Elastic potential energy =
[Turn over]

58

\section*{| 0 | 6.4 |
| :--- | :--- |}

Write down the equation which links extension (e), force (F) and spring constant (k). [1 mark]

\section*{| 0 | 6 |
| :--- | :--- |}

A force of 300 N acts on a different spring.
The force causes the spring to extend by 0.40 m.

Calculate the spring constant of the spring. [3 marks]
\qquad
\qquad

59

Spring constant $=$
[Turn over]

$0 \mid 7$

Professional rugby players wear a tracking device that measures their velocity and acceleration.

FIGURE 9 shows a player wearing a tracking device.

The player is tackling another player who is running with the ball.

FIGURE 9

Tracking device

0.7 .1

Velocity and acceleration are both vector quantities.

What is a vector quantity? [1 mark]

Tick (\checkmark) ONE box.

A quantity with both magnitude and direction

A quantity with direction only

A quantity with magnitude only
[Turn over]

0	2

Which of the following is a vector quantity? [1 mark]

Tick (\checkmark) ONE box.

Displacement

Distance

Time

BLANK PAGE

[Turn over]

64

FIGURE 10 shows a velocity-time graph for the player running with the ball.

FIGURE 10
Velocity in metres per second

65

$0 \mid 7$. 3

Determine the acceleration of the player between 0 and 1.6 s . [2 marks]
\qquad

Acceleration $=$
$\mathrm{m} / \mathrm{s}^{2}$

07.4

Describe the motion of the player between 3.4 s and 3.6 s . [1 mark]

[Turn over]

66

The force exerted on the player when she is tackled causes her to accelerate.

07.5

Write down the equation which links acceleration (a), mass (m) and resultant force (F). [1 mark]

67

$0 \mid 7.6$

The player accelerates at $25 \mathrm{~m} / \mathrm{s}^{2}$ when a resultant force of 1800 N acts on her.

Calculate the mass of the player. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass $=\ldots \mathbf{k g}$

[Turn over]

68

$0 \mid 7.7$

The tracking device sends data to a computer during the game.

Suggest ONE advantage of the data being sent during the game. [1 mark]

END OF QUESTIONS

69

	Additional page, if required. Write the question numbers in the left-hand margin.

70

	Additional page, if required. Write the question numbers in the left-hand margin.

71

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

IB/M/CH/Jun21/8464P/2F/E3

