Level 3 Certificate MATHEMATICAL STUDIES 1350/1

Paper 1
Mark scheme
June 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

[^0]Copyright © 2022 AQA and its licensors. All rights reserved.

Q	Answer	Mark	Comments	
1(b)	$\left(\frac{129}{345+406+129+162+56+42}\right) \times 80$ or $\frac{129}{1140} \times 80$ or $0.113 \ldots \times 80$ or $129 \times 0.07(0 . .)$ or $[9.03,9.1]$	M1	oe eg $\frac{43}{380} \times 80$ or $129 \div(1140 \div 80)$	
	9 with no incorrect method or total seen	A1		
		itional	idance	
	$1140 \div 129=8.8(\ldots)$ so 9			MOAO
	Addition not shown and not totalling 1			M0
	Use of 0.11 leading to 8.8 which round	to 9		M1A0
	Rounding to 9 from a value not in the	nge [9.	9.1] can gain max M1	
	$129 \div 1140=0.11 \times 80 \text { ans } 9$ No incorrect value seen from range so	ssume	value used	M1A1

Q	Answer	Mark	Comments	
2(a)	Both correct values completed March 148585.76 or 148585.77 April 148111.51 or 148111.52 or 148111.53	B2	B1 for one correct or B1ft April correct ft from their March value with answer rounded or truncated to 2dp	
	Additional Guidance			
	For the ft for April it must be their March value $\times 1.003-920$ oe			
	Spreadsheet values take precedence. If the spreadsheet has not been completed mark the values in the working lines if clear which month they are.			

Q	Answer	Mark	Comments
2(b)	Alternative method 1		
	$920 \times 6 \text { or } 5520$ or $150000-147158.77 \text { or } 2841.23$	M1	
	$920 \times 6-(150000-147158.77)$ or $147158.77-(150000-920 \times 6)$	M1dep	Oe
	2678.77	A1	
	Alternative method 2		
	At least 4 from 150000×0.003 or 450 and 149530×0.003 or 448.59 and 149058.59×0.003 or [447.17, 447.18] and their 148585.77×0.003 or [445.75, 445.76] and their 148111.52×0.003 or [444.33, 444.34]	M1	ft their March and April balances from part 2(a)

Q	Answer	Mark	Comments
2(c)	$=B 8 / B 2^{\star} 100$	B 1	

Q	Answer	Mark	Comments
3(a)	Lowest 5 and highest 30	B1	
	Lower quartile 13 and upper quartile 28	B1	
	Median 22	B1	
	Additional Guidance		
	In order the five values are 5, 13, 22,		B3

Q	Answer	Mark	Comments
3(b)	Both fully completed box and whiske plots drawn accurately with at least one labelled	B3ft	$\pm 1 / 2 \mathrm{sq}$ ft all their values for the Mathematics marks B2 one fully completed box and whisker plot drawn accurately and labelled or both diagrams correct but no labels B1 one box and whisker plot fully correct with no labels or both boxes (median and quartiles box) correctly drawn (no label needed)
	Additional Guidance		
	Ignore whiskers extended into box Whiskers do not need end lines Any height of box is allowed If boxes overlap mark to scheme if clear which is which		

Q	Answer	Mark	Comments	
4(b)	1.024 or 1.031	M1	may be implied	
	1.024^{2} and 1.031^{5}	M1dep	may be implied	
	$1.024^{2} \times 1.031^{5} \text { or }[1.22,1.222]$ or any amount $\times 1.024^{2} \times 1.031^{5}$	M1	oe eg (£) $100 \times 1.024^{2} \times 1.031^{5}=122 .(1 \ldots)$ oe eg year on year calculations [1.22, 1.222] scores M3	
	[22, 22.2] (\%)	A1		
	Additional Guidance			
	Calculations worked out separately must be to at least 3dp eg $1.024^{2}=1.049,1.031^{5}=1.165$ (both have been rounded to 3dp) $1.049 \times 1.165=1.222$ so 22.2%			M1M1M1A1
	Year on year can imply M3 eg uses a starting amount Yr 1 2.4\% calculated and added on Yr 2 works out 2.4 \% of new total and adds, Yr 3 works out 3.1% of end of Yr 2 total and adds on etc for years 4,5,6 and 7 years with 3.1% compounded each year Correct method scores M3 even with arithmetical error(s)			

Q	Answer	Mark	Comments
5	Alternative method 1		
	Makes an assumption about number of loads of washing per week/month	B1	allow 3 to 7 per week allow 12 to 30 per month
	Makes an assumption about the number of hours one cycle takes	B1	allow 1 to 3 hours may be a decimal
	Their number of loads per week \times their hours per load \times weeks in a year or Their number of loads per month \times their hours per load \times months in a year	M1	allow 48 to 52 for weeks in a year allow 11 or 12 months
	Accurate answer for their calculation	A1	allow decimal answers
	Alternative method 2		
	Makes an assumption about number of hours per week or month a washing machine is on for an average household	B2	allow 3 to 21 per week or 12 to 90 per month or B1 makes an assumption about number of days a week or month washing machine is on for an average household allow 3 to 7 per week allow 12 to 30 per month or makes an assumption about number of hours a day washing machine is on allow 1 to 3 hours
	Their days per week \times hours per day \times weeks in a year or their days per month \times hours per month \times in a year or their days per year \times hours per day	M1	allow 48 to 52 for weeks in a year allow 336 to 365 days per year
	Accurate answer for their calculation	A1	allow decimal answers

cont'd	Additional Guidance For the final 2 marks they may use numbers outside the allowed ranges for the Example $14 \times 4 \times 52=2912$	B0B0M1A1

Q	Answer	Mark	Comments
6	Alternative method 1-calculating tax and NI annually		
	$\begin{aligned} & 49000 \times 0.92 \\ & \text { or } \\ & 49000-(49000 \times 0.08) \\ & \text { or } \\ & 45080 \end{aligned}$	M1	oe only award if used for at least one of tax or NI
	$\begin{aligned} & \text { (their } 45080-12570) \times 0.2 \\ & \text { or } \\ & 32510 \times 0.2 \\ & \text { or } \\ & 6502 \end{aligned}$	M1	oe standard rate of tax per year their 45080 can be 49000 6502 is M2
	$\begin{aligned} & \text { (their } 45080-9568) \times 0.12 \\ & \text { or } \\ & 35512 \times 0.12 \\ & \text { or } 4261.44 \end{aligned}$	M1	oe allow 9568.01 basic rate of NI per year their 45080 can be 49000
	their 6502 + their 4261.44 or 10763.44	M1	total tax and NI per year may be implied 10763.44 scores M4
	their 45080 - their 10763.44	M1	their 45080 can be 49000 but must be their gross salary with or without their pension deducted ignore subtraction of their pension here if 49000 used as their 45080
	34316.56 or 34316.57	A1	annual net pay
	$\begin{aligned} & \text { (their } 34316.56 \div 12) \times \frac{2}{5} \text { or } 1143 .(. .) \\ & \text { or } \\ & (1050 \times 12) \div \text { their } 34316.56 \\ & \text { or } 0.36(7 \ldots) \text { or } 0.37 \end{aligned}$	M1	oe oe percentage
	1143.(..) and Yes or $0.36(7 \ldots)$ and 0.4 and Yes or	A1ft	ft their annual net pay oe percentages or fractions with the same denominator

$\begin{gathered} 6 \\ \text { cont'd } \end{gathered}$	$2859.67 \text { or } 2859.68$ or 34316.08	A1	monthly net pay annual net pay
	their $2859.67 \times \frac{2}{5}$ or (their $34316.08 \div 12) \times \frac{2}{5}$ or 1143.(...) or $1050 \div$ their $2859.67(\times 100)$ or $0.36(7 \ldots$) or 0.37	M1	oe percentage
	1143.(...) and Yes or $0.36(\ldots)$ and 0.4 and Yes	A1ft	ft their monthly or annual net pay allow 0.37 oe percentages or fractions with the same denominator

Additional Guidance is on the next page

$\begin{gathered} 6 \\ \text { cont'd } \end{gathered}$	Additional Guidance	
	Note that calculating monthly gives a slightly different net pay per year due to government rounding of monthly figures The final answer is the same for monthly or annual calculations	
	If tax is calculated annually but NI monthly then award the first 3 marks for the correct method for their time frame eg monthly tax $=541.83$ and annual $\mathrm{NI}=4261.44$ gains M1M1 on Alt 2 for tax and the $3^{\text {rd }} \mathrm{M} 1$ on Alt 1 for NI. For the $4^{\text {th }}$ mark the values must be for a consistent time period	
	If the 8% deduction for pension is not deducted then a maximum 6 marks can be scored on either Alt method eg following Alt 1 annually $\begin{aligned} & (49000-12570) \times 0.2=7286 \\ & (49000-9568) \times 0.12=4731.84 \\ & 49000-(7286+4731.84)=36982.16 \\ & (36982.16 \div 12) \times \frac{2}{5} \\ & 1232.74 \text { and yes } \end{aligned}$	M0M1 M1 M1M1A0 M1 A1ft
	If the 8% deduction is seen (eg 45080) but then not used at all withhold the first mark	

Q	Answer	Mark	Comments	
7(a)	$\begin{aligned} & {[(140 \times 12)+(180 \times 23)+(220 \times 45)} \\ & +(260 \times 32)+(300 \times 18)] \div 130 \end{aligned}$ or $\begin{aligned} & (1680+4140+9900+8320+5400) \\ & \div 130 \end{aligned}$ or $29440 \div 130$	M1	condone one incorrect midpoint or total	
	226.(46...) or 226.5	A1		
	$\frac{\text { their } 226.46 \ldots-193}{193} \times 100 \text { or } 0.17 \ldots$ or 193×1.15 or 221.95 or 222 or 193×0.15 and their $226.46-193$ or 28.(95) and 33.(46)	M1	accept 29 for 28.(95)	
	17% and Yes or 226.(...) and 221. 95 and Yes or 28.(95) and 33.(46) and Yes	A1ft	ft their mean accept 222 for 221.95 accept 29 for 28.(95)	
	Additional Guidance			
	Although question says You must show your working a correct mean without working - presume from calculator stats functions			M1A1
	Yes may be implied eg the advert is justified			
	Attempt at median cannot gain the first 2 marks but may be awarded the M1A1ft			
	If their mean is less than 193 then they can state No it has decreased for the 2nd M1A1 Any percentage calculation used must however be correct			

Q	Answer	Mark	Comments
8(b)	$\begin{aligned} & 129 \div[290,300] \times[190,200] \\ & \text { or } \\ & 129 \div[2.9,3] \times[1.9,2.0] \\ & \text { or } \\ & {[0.43,0.445] \times[190,200]} \end{aligned}$	M1	oe implies reading of [290, 300]
	[81.7, 89] with correct readings seen	A1	readings may be on the graph
	Additional Guidance		
	$129 \div[290,300]$ may be seen as a de		

Q	Answer	Mark	Comments
9(a)	Alternative method 1		
	Makes an assumption about number of hours factory is open per day or number of hours production per day eg 12-1.5 or 10.5	B1	8 to 18 or production hours 5 to 17
	Makes an assumption about number of sweets produced per minute eg 14500	B1	must be [12000, 16000] implied by being used in a calculation
	Volume of sweet $\begin{aligned} & \frac{4}{3} \times \pi \times 0.8^{3} \text { or }[2.1,2.15] \text { or } \\ & {[0.68,0.63] \pi} \end{aligned}$	M1	only allow rounding to 2 if method seen
	Volume of cylindrical tube $\pi \times 2^{2} \times 10 \text { or }[125,126] \text { or } 40 \pi$	M1	
	Assumption of waste space deducted	B1	allow 20% to 60% wasted space may be implied
	Divides their tube volume by their sweet volume with deduction for wastage eg waste stated as 40% $125.7 \div 2.14 \times 0.6$ or 35 eg $125.7 \div 2.14=58$ sweets with wastage say 40 sweets	M1	number of sweets per tube deduction of wastage may be applied to volume of the cylinder first wastage may be a number of sweets deducted. If this fits the percentage range then award the previous B1
	their production hours $\times 60 \times$ their number of sweets per minute eg $10.5 \times 60 \times 14500=9135000$ or their number of sweets per minute \div their number of sweets per tube eg $14500 \div 35=414$	M1	calculates number of sweets per day production hours $=$ factory hours $-[1,3]$ follow their assumption for number of hours open allow max production hours of 23 or calculates number of tubes per minute number of sweets per tube must be an integer

$\begin{gathered} 9 a \\ \text { cont'd } \end{gathered}$	their sweets per day \div their sweets per tube $\text { eg } 9135000 \div 35$ or their tubes per minute \times their production hours $\times 60$ eg $414 \times 10.5 \times 60$	M1	number of sweets per tube must be an integer production hours $=$ factory hours $-[1,3]$ follow their assumption for number of hours open allow max production hours of 23
	Correct total for their assumptions and integer number of sweets in a tube $\text { eg } 261000$	A1ft	ft their assumptions and volumes with final two method marks scored answer cannot be a decimal it may be rounded suitably eg to nearest 10,100 , or 1000

Mark scheme and Additional Guidance continue on the following pages

	Alternative method 2		
	Makes an assumption about number of hours factory is open per day or number of hours production per day eg 12-1.5 or 10.5	B1	8 to18 or production hours 5 to 17
	Makes an assumption about number of sweets produced per minute eg 14500	B1	must be [12000, 16000] implied by being used in a calculation
	Makes an assumption about number of sweets per layer in tube	B1	allow only 3 , 4 or 5
	Minimum layers of sweets $10 \div 1.6 \text { or } 6.25$	M1	
$9(a)$ cont'd	Rounds up their 6.25 to 7 to assume overlapping layers or rounds down to 6 complete layers	M1dep	dep on previous M1
	their sweets per layer \times their layers per tube eg 4×8 or 32	M1	number of sweets per tube any values allowed
	their production hours $\times 60 \times$ their number of sweets per minute $\text { eg } 10.5 \times 60 \times 14500=9135000$ or their number of sweets per minute \div their number of sweets per tube $\text { eg } 14500 \div 32=453$	M1	calculates number of sweets per day production hours $=$ factory hours $-[1,3]$ follow their assumption for number of hours open allow max production hours of 23 or calculates number of tubes per minute number of sweets per tube must be an integer
	their sweets per day \div their sweets per tube $\text { eg } 9135000 \div 32$ or	M1	number of sweets per tube must be an integer production hours $=$ factory hours $-[1,3]$

| | their tubes per minute \times their
 production hours $\times 60$
 eg $453 \times 10.5 \times 60$ | follow their assumption for number of hours
 open
 allow max production hours of 23 |
| :--- | :--- | :--- | :--- |
| | Correct total for their assumptions
 and integer number of sweets in a
 tube
 eg 285470 | A1ft their assumptions and volumes with final
 two method marks scored
 answer cannot be a decimal
 it may be rounded suitably eg to nearest
 10,100, or 1000 |

Additional Guidance is on the next page

$\begin{gathered} 9 a \\ \text { cont'd } \end{gathered}$	Additional Guidance	
	Note that not all the method marks have to be awarded for the A1 to be awarded but the final two method marks must be awarded eg an incorrect volume will lose the method mark but the A1ft may still be awarded for a correct total using their volume	
	Allow 1 to 3 hours for the time before production starts	
	Working out the number of sweets per day using their production hours but then adding back on a number of sweets for the hours before production starts loses the mark for their production hours $\times 60 \times$ their number of sweets per minute ($7^{\text {th }}$ or $8^{\text {th }}$ mark depending on their approach order). eg states factory open 12 hours a day. Does $12-1.5=10.5$ hours production Then $10.5 \times 60 \times 14000=8820000$ (normally awarded M1) $8820000+21000=8841000$ sweets for 12 hours (the M1 is now not awarded/is retracted)	
	If their answer to volume \div volume is a decimal, then rounding that value up or down to an integer is not to be counted as wastage eg $125.66 \div 2.114=58.7$ so 58 sweets. This is not to be counted as wastage.	
	If wastage is counted as a number of sweets allow rounding to integer even if this takes their answer out of tolerance eg calculates 58 sweets for full volume uses 60% wastage $=34.8$ allow 35 or 34 subtracted for wastage	
	Wastage can be considered by reducing the volume of the cylinder or increasing the volume of the sweet eg sweet volume $=2.14$, makes it 3 to account for wastage/space around oe This would be awarded the B1 for wastage as the increase is within the wastage tolerance	
	Those who multiply the number of sweets per day by the volume of one sweet are treating the volume as one entity and therefore not using an integer number of sweets. This leads to an incorrect number of tubes. They cannot be awarded the final M1 or the A1 eg factory open 12 hours a day. $12-1.5=10.5$ hours production Assume 15000 sweets per minute $10.5 \times 60 \times 15000=9450000$ Volume of sweet $=2.14$ $9450000 \times 2.14=20223000 \mathrm{~cm}^{3}$ Vol of cylinder $=126 \mathrm{~cm}^{3}$ Assume 25% wastage $126 \times 0.75=94.5 \mathrm{~cm}^{3}$ $20223000 \div 94.5=214000$	B1B1M1M1 B1M1M1M0 A0

Q	Answer	Mark	Comments	
9(b)	Suitable comment eg Number of hours per day may be lower so the number of sweets/tubes would be lower or may produce more/less sweets per minute so more/ less tubes would be needed or amount/percentage wastage may be higher so less tubes would be filled	B1	oe must state how the answer is affected	
	Additional Guidance			
	Just stating that an assumed value may be different is insufficient eg there may be more sweets produced per minute			B0
	They cannot comment about changing the size of the sweet/size of the tube			

[^0]: AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

