Level 3 Certificate MATHEMATICAL STUDIES 1350/2A

Paper 2A Statistical Techniques
Mark scheme
June 2022
Version: 1.1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Q	Answer	Mark	Comments
$\mathbf{1}(\mathrm{a})$	$11: 5$	B1	

Q	Answer	Mark	Comments
1 (b)	Alternative method 1		
	$\begin{aligned} & 10 \times 1 \text { and } 15 \times 2 \text { and } \\ & 25 \times 2 \text { and } 20 \times 3 \text { and } \\ & 5 \times 3 \text { and } 5 \times 4 \\ & \text { or } \\ & 10 \times 1 \text { and } 40 \times 2 \text { and } \\ & 20 \times 3 \text { and } 5 \times 3 \text { and } 5 \times 4 \\ & \text { or } \\ & 10 \text { and } 30 \text { and } 50 \text { and } 60 \\ & \text { and } 15 \text { and } 20 \\ & \text { or } \\ & 10 \text { and } 80 \text { and } 60 \text { and } 15 \\ & \text { and } 20 \end{aligned}$	M1	allow one error or omission may be seen beside table
	185 with correct method	A1	may be implied by 185 + their assumed visitor spaces
	185 and no	E1ft	ft their 185 with yes if their total < 185 or no if their total > 185

Q	Answer	Mark	Comments	
1 (b) cont	Alternative method 2 (interprets as a total of 3 and 4 spaces for all 4-bed and 5-bed properties)			
	10×1 and 15×2 and 25×2 and 20×3 and 3 and 4 or 10×1 and 40×2 and 20×3 and 3 and 4 or 10 and 30 and 50 and 60 and 3 and 4 or 10 and 80 and 60 and 3 and 4	M1	allow one error or omission may be seen beside table	
	157 with correct method	A1		
	157 and yes	E1ft	ft their 157 with yes if their total < 157 or no if their total > 157	
	Additional Guidance			
	$10+15+25+20+15+20$ and 105 and yes			M0 A0 E1ft
	185 may be implied, eg $10+80+60+15+20+40=225$ (where 40 spaces assumed for visitor parking) and no			M1 A1 E1
	185 and no with no method seen			MO A0 E0

Q	Answer	Mark	Comments
	Any two valid improvements eg Spell out Northern Ireland Include other fuels'/the missing category in the key Break down renewables/fossil fuels into different types Add a title to the chart Show the amount of electricity generated in GWh, not the percentage Use pattern to better distinguish the fuel types or label the bars with the fuel type or reorder the bars so that similar shades are not next to each other) Include grid lines Include more increments on the vertical axis Label the axes Maknore any additional but non- contradictory suggestions		

Q	Answer	Mark	Comments
2 (b)	Morning Record		
	Alternative method 1		
	$110221 \times 70 \div 100$ or $77 \text { 154.(7) or } 77155$	M1	oe
	$\begin{aligned} & 77154 .(7) \text { or } 77155 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	
	Alternative method 2		
	$\begin{aligned} & 78105 \div 70 \times 100 \\ & \text { or } \\ & 111578 .(57 \ldots) \\ & \text { or } \\ & 111579 \end{aligned}$	M1	oe
	$\begin{aligned} & 111578 .(57 \ldots) \text { or } 111579 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	
	Alternative method 3		
	$\begin{aligned} & 78105 \div 110221(\times 100) \\ & \text { or } \\ & 70.8(6 \ldots) \text { or } 70.9 \text { or } \\ & 0.708(6 \ldots) \text { or } 0.709 \end{aligned}$	M1	oe accept 71 or 0.71
	$\begin{aligned} & 70.8(6 \ldots) \text { or } 70.9 \text { or } \\ & 0.708(6 \ldots) \text { or } 0.709 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	accept 71 or 0.71

Q	Answer	Mark	Comments
$2 \text { (b) }$ cont	Alternative method 4		
	$\begin{aligned} & (110221-78105) \div \\ & 110221(\times 100) \end{aligned}$ or $32116 \div 110221(\times 100)$ or $0.29(1 \ldots) \text { or } 29(.1 \ldots)$	M1	oe
	$\begin{aligned} & 0.29(1 \ldots) \text { or } 29(.1 \ldots) \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	

Q	Answer	Mark	Comments
$2 \text { (b) }$ cont	Daily Bulletin Review		
	Alternative method 1 (comparing proportions of wind to other renewables)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$\begin{aligned} & 33791 \div \text { their } 44314 \text { or } \\ & 0.76(\ldots) \\ & \text { and } \\ & 13 \div 17 \text { or } 0.76(\ldots) \end{aligned}$	M1	
	$0.76(\ldots)$ with full method seen and True	A1	oe percentage
	Alternative method 2 (comparing multiplier from wind to other renewables)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$\begin{aligned} & \text { their } 44314 \div 33791= \\ & 1.3(1 \ldots) \\ & \text { and } \\ & 17 \div 13=1.3(07 \ldots) \\ & \text { or } 17 \div 13=1.31 \end{aligned}$	M1	correct for their 44314
	1.3(...) with full method seen and True	A1	oe percentage

Q	Answer	Mark	Comments
$2 \text { (b) }$cont	Alternative method 3 (what other renewables should be in $13: 17$)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$33791 \div 13 \times 17$ or $44 \text { 188.(...) }$	M1	
	44 188.(...) and 44314 and True	A1	
	Alternative method 4 (comparing one part of wind with one part of other renewables)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$\begin{aligned} & 33791 \div 13 \\ & \text { and } \\ & \text { their } 44314 \div 17 \end{aligned}$	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } \\ & 33791 \div 13 \text { or } 2599 \\ & \text { and } \\ & 44314 \div 2599 \text { or } 17.05 \end{aligned}$
	```2599.(3...) and 2606.(7...) or 2607 and True```	A1	allow 2600


Q	Answer	Mark	Comments
$2 \text { (b) }$ cont	Alternative method 5 (finding an approximately equivalent ratio)		
	$78105-33791$   or $129+11228+32957$   or   44314	M1	
	$\begin{aligned} & 33791 \div[2533,2685] \\ & \text { and } \\ & 44314 \div[2533,2685] \end{aligned}$	M1	both divisiors must be the same
	```33791\div[2533, 2685] and 44 314 % [2533, 2685] and correct results for their divisor and True```	A1	results may be rounded to 13 and 17 with divisor shown
	Alternative method 6 (working out other renewables as 17 parts of total)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$\begin{aligned} & 78105 \div 30 \times 17 \text { or } \\ & 44259(.5) \text { or } 44260 \end{aligned}$	M1	
	$44259(.5)$ or 44260 and 44314 and True	A1	

Q	Answer	Mark	Comments	
$2 \text { (b) }$ cont	Alternative method 7 (working out wind as 13 parts of total)			
	$\begin{aligned} & 78105 \div 30 \text { or } 2603.5 \text { or } \\ & 2604 \end{aligned}$	M1		
	their 2603.5×13 or $33845(.5)$ or 33846	M1		
	$\begin{aligned} & 33845(.5) \text { or } 33846 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1		
	Alternative method 8 (comparing wind as a proportion of total renewables)			
	$13 \div 30$ or 0.43(3...)	M1		
	$\begin{aligned} & 33791 \div 78105 \text { or } \\ & 0.43(2 \ldots) \end{aligned}$	M1		
	0.43 with full method seen and True	A1	oe percentage	
	Additional Guidance			
	Variations which mix alternative methods are acceptable. Choose the scheme that favours the student.			
	Accept Yes for True			
	$33791: 44314$ and 13:17.04(8...) and True			M1 M1 A1
	33791 : 44314 and 13:17.05 and True			M1 M1 A1
	33791 : 44314 and 12.96(3...) : 17 and True			M1 M1 A1
	33791 : 44314 and 13:17 and True with no divisor shown			M1 M0 A0

Q	Answer	Mark	Comments
2 (c)	Alternative method 1 (first finding GWh used)		
	$\begin{aligned} & 4189 \times 1000000 \\ & \text { or } \\ & 4189000000 \end{aligned}$	M1	oe
	$\begin{aligned} & \text { their } 4189000000 \times 14.4 \\ & \div 100 \end{aligned}$ or 603216000	M1	oe
	```603216000 or 603000000 and Yes```	A1	oe
	Alternative method 2 (fir	ding	ce per GWh)
	$14.4 \times 1000000$   or $14400000$	M1	oe
	$\begin{aligned} & \text { their } 14400000 \times 4189 \div \\ & 100 \\ & \text { or } \\ & 603216000 \end{aligned}$	M1	oe
	```603216000 or 603000000 and Yes```	A1	oe
	Additional Guidance		
	Accept all values in standard form		
	Accept comparison in pence with 60000000000 seen		
	Condone recovery to pounds after working in pence with division by 100 not seen		

Q	Answer	Mark	Comments
2 (d)	Alternative method 1		
	$\begin{aligned} & 7700 \div 26.9 \text { or } 286.2(4 \ldots) \\ & \text { or } 286.25 \\ & \text { or } \\ & 7700 \div 0.269 \end{aligned}$	M1	oe
	[28 490, 28644]	A1	
	Alternative method 2		
	$\begin{aligned} & 7700 \times 73.1 \div 26.9 \\ & \text { or } 20924 .(5 \ldots) \\ & \text { or } 20925 \end{aligned}$	M1	oe
	[28 490, 28644]	A1	
	Additional Guidance		
	Ignore further rounding after answer in interval seen		

Q	Answer	Mark	
	Any valid reason eg The amount of electricity produced by each nation is not the same England produces more electricity than Scotland He should have worked out a weighted mean He should have worked out the total energy generated by renewables as a percentage of the overall total He should have used actual values (rather than percentages) You can't always just average percentages Each percentage is the percentage of its own country, not the UK as a whole He has calculated the mean percentage based on each country's total, not the UK as a whole	E1	

Q	Answer	Mark	Comments
		B2	B1 for mean or standard deviation correctly matched
	Standard deviation of the standardised normal distribution		

Q	Answer	Mark	Comments
4(a)	1.64	B1	

Q	Answer	Mark	Comments
4(b)	```103 }\pm\mathrm{ their 1.64 }\times\sqrt{}{}340 \sqrt{}{20} or 103 \pm their 1.64 x 4.12(...) or 103 \pm6.76```	M2	oe ft their answer to part 4(a) M1 for one error in the equation accept 1.6449 or 1.645 or 1.65 for 1.64
	([96, 96.5], [109.5, 110])	A1ft	ft their answer to part 4(a) condone reverse order: [109.5, 110], [96, 96.5])
	Additional Guidance		
	If candidates do not use the correct value of 1.64 or their answer to part 4(a) they can score maximum M1 eg $103 \pm 1.96 \times \sqrt{ } 340 \div \sqrt{ } 20$ (Use of 1.96 counts as one error)		
	If they do not select any answer for part 4(a) and go on to use $0.90,1.28$ or 2.58 they can score maximum M1 as above		
	If candidates use 340 or 20 instead of $\sqrt{ } 340$ or $\sqrt{ } 20$ can score M1 A0 only However, if both 340 and 20 used instead of $\sqrt{ } 340$ and $\sqrt{ } 20$ scores 0		
	Not using \pm counts as one error		
	Premature rounding or truncating $(\mathrm{eg} \sqrt{ } 20=4)$ leading to an inaccurate answer can only gain method marks		
	ISW rounding		
	$\begin{aligned} & \text { For } z=1.28 \text { or } 1.2816, \mathrm{CI}=([97.5,98],[108,108.5]) \\ & \text { For } z=2.58 \text { or } 2.5758, \mathrm{CI}=([92,92.5],[113.5,114]) \\ & \text { For } z=0.9, \mathrm{CI}=([99,99.5],[106.5,107]) \end{aligned}$		
	Correct answer seen without method or contradiction scores full marks		

Q	Answer	Mark	Comments
4(c)	120 does not lie within the confidence interval Or correctly compares 120 with upper limit of their confidence interval	M1	ft their answer to part 4(b) condone "it" or "the mean" in place of 120
	No or invalid or reject claim	A1ft	oe ft their answer to part 4(b)
	Additional Guidance		
	Accept equivalents for 'no'		
	If they didn't write a confidence interval in part 4(b), then part 4(c) scores 0		
	If their confidence interval in part 4(b) does contain 120: M1 for stating 120 does lie within the confidence interval, or for correctly comparing 120 with both their upper and lower limits A1 f.t. for Yes or valid or accept claim oe or insufficient evidence to comment		
	If their confidence interval in part 4(b) is wholly above 120 : M1 for stating 120 does not lie within the confidence interval, or for correctly comparing 120 with lower limit of their confidence interval A1 f.t. for No or invalid or reject claim oe		
	Comparison of 120 with the sample mean (or the midpoint of their confidence interval) scores M0		
	For A1, condone definitive statements such as "the mean IQ cannot be 120 " or "the manager's claim is impossible"		
	ISW after a correct answer if candidate makes further spurious or incorrect comments		

Q	Answer	Mark	Comments
5(a)	$98 \rightarrow 1$ $147 \rightarrow 5$ $6 \rightarrow 3$	B2	B1 for one correct

Q	Answer	Mark	Comments
5(b)	Carly and large(st) sample	E1	oe accept 3.8 or 25 in place of Carly provided no contradiction seen

Q	Answer	Mark	Comments
5(c)	$10 \times 3.6 \text { or } 36$ or $10 \times 4.3 \text { or } 43$ or $25 \times 3.8 \text { or } 95$	M1	may be seen embedded in a calculation or expression
	$10 \times 3.6+10 \times 4.3+25 \times$ $3.8+$ their three scores from part 5(a) or 174 + their three scores from part 5(a) or $10 \times 3.6+10 \times 4.3+25 \times$ $3.8+3 \times$ mean of their three scores from part 5(a) or 183	M1dep	oe
	their $183 \div(3+10+10+$ 25) or their $183 \div 48$	M1dep	oe dependent on both previous M marks
	3.81(25)	A1ft	ft from their dice scores from part 5(a) with answer correct to 3 s.f. or better must have scored all 3 method marks SC2 for final answer of $3.86(\ldots)$ or 3.87 SC2 for using just Carly plus their three values from part 5(a) (3.71... if 5(a) is correct)
	Additional Guidance		
	First SC2 is for omission of their values from part 5(a) ie $(36+43+95) \div(10+10+$ 25)		
	Second SC2 ft their values from part 5(a)		

Q	Answer	Mark	Comments
	$\begin{array}{l}\text { No or likely to be biased or } \\ \text { cannot tell } \\ \text { and the mean is not 3.5 } \\ \text { or } \\ \text { yes or possibly fair } \\ \text { and the mean is close to } \\ 3.5\end{array}$		$\begin{array}{l}\text { oe } \\ \text { ft their 3.81(25) from part 5(c) }\end{array}$
5(d)		$\begin{array}{l}\text { B1 for 3.5 with no conclusion or with } \\ \text { incorrect conclusion }\end{array}$	
B2ft	$\begin{array}{l}\text { B1 for Yes or possibly fair because the } \\ \text { mean is roughly half-way between 1 and 6 } \\ \text { oe }\end{array}$		
B1 for No or likely to be biased or cannot			
tell because the mean is not half-way			
between 1 and 6			
oe			

tell and the mean is not 3\end{array}\right]\)

Q	Answer	Mark	Comments
6(a)	-1	B1	oe

Q	Answer	Mark	Comments
$\mathbf{6 (b)}$	(pmcc =) 0.44(0...) or 0.441 Positive and weak	B2	B1 for (pmcc =) 0.44(0...) or 0.441 condone "moderate" in place of "weak" accept "fairly weak" oe do not accept "very weak", "extremely weak" oe
	Additional Guidance		

Q	Answer	Mark	Comments
7(a)	$\begin{aligned} & (X \sim) \mathrm{N}\left(1.58,0.31^{2}\right) \\ & \text { or }(X \sim) \mathrm{N}(1.58,0.0961) \end{aligned}$	B1	condone missing X or other letters (except N) in place of X
	Additional Guidance		
	Accept Normal for N providing there are no other words Accept n for N		
	Normal and 1.58 and 0.31^{2} scores B1		
	$\mathrm{N} \sim X\left(1.58,0.31^{2}\right)$ scores B0		

Q	Answer	Mark	Comments
$\mathbf{7}$ 7(b)	$(z=)(2-1.58) \div 0.31$ or [1.35, 1.36]	M1	condone (1.58-2) or [-1.36, -1.35] may be implied by final answer of [0.0869, $0.09]$
	$[0.91,0.9131]$	A1	oe allow recovery

Q	Answer	Mark	Comments
7(c)	$(z=)(1.3-1.58) \div 0.31$ or $-0.9(0 \ldots)$	M1	condone (1.58-1.3) or 0.9(0...) may be implied by final answer of $0.82]$
	$[0.8$,		

Q	Answer	Mark	Comments
7(d)	$\frac{k-1.58}{0.31}=[-0.254,-0.25]$ or $\frac{1.58-k}{0.31}=[0.25,0.254]$	M2	M1 for either side of the equation correct. M1 implied by final answer of [1.65, 1.66] with no incorrect working seen
	[1.5, 1.51]	A1	allow recovery
	Additional Guidance		
	M1 can be awarded for $\frac{k-1.58}{0.31}$ or $\frac{1.58-k}{0.31}$ or $[-0.254,-0.25]$ or $[0.25,0.254]$, even if not seen as part of an equation.		
	$[1.65,1.66] \text { comes from } \frac{k-1.58}{0.31}=[0.25,0.254]$		

Q	Answer	Mark	Comments
8(a)	E or (34, 74)	E1	

Q	Answer	Mark	Comments
8	$y=0.63(\ldots) x+19$	B2ft	B1 for $y=0.63(\ldots) x+c$ or $y=k x+19$ ft their outlier values correct to 2 s.f. or better
	Additional Guidance		

Q	Answer	Mark	Comments
$\mathbf{8} \mathbf{8 (c)}$	(test 2 for student $\mathrm{H}=)[36$, $36.1]$	B1ft	ft their equation of the regression line. value rounded to nearest integer or better
	their $0.63 x+$ their $19=49$ or (49 - their 19) \div their 0.63	M1	oe. May be implied by answer consistent with their regression equation
	(test 1 for student $\mathrm{L}=)[47$, 48]	A1ft	ft their equation of the regression line. value rounded to nearest integer or better

	[41.43, 41.6] and [51.79, 52] clearly selected / used as their bounds	A1ft	ft their mean value. Dependent on second M mark only. values rounded to nearest integer or better
	C, E, F and L	A1ft	dependent on both previous M marks. ft their mean value and their H and L provided at least two students fall within their bounds
	Alternative method 3 (scaling each student's total and comparing against 0.8 and 1.1)		
	$\begin{aligned} & (t=) 61,162,93,151,108, \\ & 107,138,63,59,78,127, \\ & 97 \end{aligned}$	B1ft	ft their H and L at least 8 correct values seen
	$\begin{aligned} & \text { (sum of their values of } t) \div \\ & 12 \end{aligned}$	M1	oe. May be implied by correct value for m
	$(m=)[103.58,104]$	A1ft	ft their H and L . value rounded to nearest integer or better
	Divides at least two of their t values by their m value	M1	
	Correctly divides all 12 of their t values by their m value	A1ft	ft their m value and their H and L all 12 values seen, correct to 2 d.p. or better
	C, E, F and L	A1ft	dependent on both previous M marks. ft their m value and their H and L provided at least two students fall within 0.8 and 1.1

