# Level 3 Certificate MATHEMATICAL STUDIES 1350/2B 

Paper 2B Critical Path and Risk Analysis
Mark scheme
June 2022
Version: 1.1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}(\mathrm{a})$ | $11: 5$ | B1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 1 (b) | Alternative method 1 |  |  |
|  | $10 \times 1$ and $15 \times 2$ and <br> $25 \times 2$ and $20 \times 3$ and <br> $5 \times 3$ and $5 \times 4$ <br> or <br> $10 \times 1$ and $40 \times 2$ and <br> $20 \times 3$ and $5 \times 3$ and $5 \times 4$ <br> or <br> 10 and 30 and 50 and 60 and 15 and 20 <br> or <br> 10 and 80 and 60 and 15 and 20 | M1 | allow one error or omission may be seen beside table |
|  | 185 with correct method | A1 | may be implied by 185 + their assumed visitor spaces |
|  | 185 and no | E1ft | ft their 185 with <br> yes if their total < 185 <br> or <br> no if their total > 185 |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b) cont | Alternative method 2 (interprets as a total of 3 and 4 spaces for all 4-bed and 5-bed properties) |  |  |  |
|  | $10 \times 1$ and $15 \times 2$ and $25 \times 2$ and $20 \times 3$ and 3 and 4 <br> or <br> $10 \times 1$ and $40 \times 2$ and <br> $20 \times 3$ and 3 and 4 <br> or <br> 10 and 30 and 50 and 60 and 3 and 4 <br> or <br> 10 and 80 and 60 and 3 and 4 | M1 | allow one error or omission may be seen beside table |  |
|  | 157 with correct method | A1 |  |  |
|  | 157 and yes | E1ft | ft their 157 with yes if their total < 157 or no if their total > 157 |  |
|  | Additional Guidance |  |  |  |
|  | $10+15+25+20+15+20$ and 105 and yes |  |  | M0 A0 E1ft |
|  | 185 may be implied, eg $10+80+60+15+20+40=225$ (where 40 spaces assumed for visitor parking) and no |  |  | M1 A1 E1 |
|  | 185 and no with no method seen |  |  | MO A0 E0 |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Alternative method 1 |  |  |  |
|  | $\begin{aligned} & 80 \times 23 \div 100 \\ & \text { or } \\ & 18(.4) \\ & \text { or } \\ & 19 \end{aligned}$ | M1 | implied by 9 or 8 for 2-bedroom flat in table with no incorrect working |  |
|  | 9 | A1 | no incorrect working number of 2-bedroom flats |  |
|  | 31 | B1ft | number of 2-bedroom houses ft 40 - their 9 accept decimals |  |
|  | Alternative method 2 |  |  |  |
| 1 (c) | $\begin{aligned} & 80 \times((23 \div 100)-(10 \div \\ & 80)) \\ & \text { or } \\ & 80 \times(0.23-0.125) \\ & \text { or } \\ & 8.4 \end{aligned}$ | M1 | implied by 9 or 8 for 2-bedroom flat in table with no incorrect working |  |
|  | 9 | A1 | no incorrect working number of 2-bedroom flats |  |
|  | 31 | B1ft | number of 2-bedroom houses ft 40 - their 9 accept decimals |  |
|  | Additional Guidance |  |  |  |
|  | Award M1 for correct percentage calculation, even if 2-bedroom flat value is greater than 9 |  |  |  |
|  | correct values from incorrect method score MO AO but can gain B1ft, eg <br> $40 \times 23 \div 100$ or 9.2 and 9 and 31 |  |  | M0 A0 B1ft |
|  | $80 \times 23 \div 100$ or 18.4 and 8 and 32 |  |  | M1 A0 B1ft |



| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 2 (b) | Morning Record |  |  |
|  | Alternative method 1 |  |  |
|  | $\begin{aligned} & 110221 \times 70 \div 100 \\ & \text { or } \\ & 77154 .(7) \text { or } 77155 \end{aligned}$ | M1 | oe |
|  | $\begin{aligned} & 77154 .(7) \text { or } 77155 \\ & \text { and } \\ & \text { True } \end{aligned}$ | A1 |  |
|  | Alternative method 2 |  |  |
|  | $\begin{aligned} & 78105 \div 70 \times 100 \\ & \text { or } \\ & 111578 .(57 \ldots) \\ & \text { or } \\ & 111579 \end{aligned}$ | M1 | oe |
|  | ```111578.(57...) or }11157 and True``` | A1 |  |
|  | Alternative method 3 |  |  |
|  | $\begin{aligned} & 78105 \div 110221(\times 100) \\ & \text { or } \\ & 70.8(6 \ldots) \text { or } 70.9 \text { or } \\ & 0.708(6 \ldots) \text { or } 0.709 \end{aligned}$ | M1 | oe accept 71 or 0.71 |
|  | 70.8(6...) or 70.9 or 0.708(6...) or 0.709 and True | A1 | accept 71 or 0.71 |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $2 \text { (b) }$cont | Alternative method 4 |  |  |
|  | $\begin{aligned} & (110221-78105) \div \\ & 110221(\times 100) \end{aligned}$ <br> or $32116 \div 110221(\times 100)$ <br> or $0.29(1 \ldots) \text { or } 29(.1 \ldots)$ | M1 | oe |
|  | $\begin{aligned} & 0.29(1 \ldots) \text { or } 29(.1 \ldots) \\ & \text { and } \\ & \text { True } \end{aligned}$ | A1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $2 \text { (b) }$ cont | Daily Bulletin Review |  |  |
|  | Alternative method 1 (comparing proportions of wind to other renewables) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or <br> 44314 | M1 |  |
|  | ```33791 % their 44 314 or 0.76(...) and 13\div17 or 0.76(...)``` | M1 |  |
|  | $0.76(\ldots)$ with full method seen <br> and <br> True | A1 | oe percentage |
|  | Alternative method 2 (comparing multiplier from wind to other renewables) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or <br> 44314 | M1 |  |
|  | $\begin{aligned} & \text { their } 44314 \div 33791= \\ & 1.3(1 \ldots) \\ & \text { and } \\ & 17 \div 13=1.3(07 \ldots) \\ & \text { or } 17 \div 13=1.31 \end{aligned}$ | M1 | correct for their 44314 |
|  | 1.3(...) with full method seen <br> and <br> True | A1 | oe percentage |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $2 \text { (b) }$ cont | Alternative method 3 (what other renewables should be in $13: 17$ ) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or $44314$ | M1 |  |
|  | $33791 \div 13 \times 17$ <br> or $44 \text { 188.(...) }$ | M1 |  |
|  | 44 188.(...) <br> and <br> 44314 <br> and <br> True | A1 |  |
|  | Alternative method 4 (comparing one part of wind with one part of other renewables) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or <br> 44314 | M1 |  |
|  | $\begin{aligned} & 33791 \div 13 \\ & \text { and } \\ & \text { their } 44314 \div 17 \end{aligned}$ | M1 | oe <br> eg <br> $33791 \div 13$ or 2599 <br> and $44314 \div 2599 \text { or } 17.05$ |
|  | $\begin{aligned} & 2599 .(3 \ldots) \\ & \text { and } \\ & 2606 .(7 \ldots) \text { or } 2607 \\ & \text { and } \\ & \text { True } \end{aligned}$ | A1 | allow 2600 |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 2 (b) cont | Alternative method 5 (finding an approximately equivalent ratio) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or $44314$ | M1 |  |
|  | $\begin{aligned} & 33791 \div[2533,2685] \\ & \text { and } \\ & 44314 \div[2533,2685] \end{aligned}$ | M1 | both divisiors must be the same |
|  | ```33791\div[2533, 2685] and 44 314\div[2533, 2685] and correct results for their divisor and True``` | A1 | results may be rounded to 13 and 17 with divisor shown |
|  | Alternative method 6 (working out other renewables as 17 parts of total) |  |  |
|  | $78105-33791$ <br> or $129+11228+32957$ <br> or <br> 44314 | M1 |  |
|  | $\begin{aligned} & 78105 \div 30 \times 17 \text { or } \\ & 44259(.5) \text { or } 44260 \end{aligned}$ | M1 |  |
|  | $\begin{aligned} & 44259(.5) \text { or } 44260 \\ & \text { and } \\ & 44314 \\ & \text { and } \\ & \text { True } \end{aligned}$ | A1 |  |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| $2 \text { (b) }$ cont | Alternative method 7 (working out wind as 13 parts of total) |  |  |  |
|  | $\begin{aligned} & 78105 \div 30 \text { or } 2603.5 \text { or } \\ & 2604 \end{aligned}$ | M1 |  |  |
|  | $\begin{aligned} & \text { their } 2603.5 \times 13 \text { or } \\ & 33845(.5) \text { or } 33846 \end{aligned}$ | M1 |  |  |
|  | $33845(.5) \text { or } 33846$ <br> and <br> True | A1 |  |  |
|  | Alternative method 8 (comparing wind as a proportion of total renewables) |  |  |  |
|  | $13 \div 30$ or $0.43(3 \ldots)$ | M1 |  |  |
|  | $\begin{aligned} & 33791 \div 78105 \text { or } \\ & 0.43(2 \ldots) \end{aligned}$ | M1 |  |  |
|  | 0.43 with full method seen and True | A1 | oe percentage |  |
|  | Additional Guidance |  |  |  |
|  | Variations which mix alternative methods are acceptable. Choose the scheme that favours the student. |  |  |  |
|  | Accept Yes for True |  |  |  |
|  | 33791 : 44314 and 13: 17.04(8...) and True |  |  | M1 M1 A1 |
|  | 33791 : 44314 and 13:17.05 and True |  |  | M1 M1 A1 |
|  | 33791 : 44314 and 12.96(3...) : 17 and True |  |  | M1 M1 A1 |
|  | $33791: 44314$ and 13:17 and True with no divisor shown |  |  | M1 M0 A0 |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 2 (c) | Alternative method 1 (first finding GWh used) |  |  |
|  | $\begin{aligned} & 4189 \times 1000000 \\ & \text { or } \\ & 4189000000 \end{aligned}$ | M1 | oe |
|  | $\begin{aligned} & \text { their } 4189000000 \times 14.4 \\ & \div 100 \\ & \text { or } \\ & 603216000 \end{aligned}$ | M1 | oe |
|  | ```603216000 or 603000 000 and Yes``` | A1 | oe |
|  | Alternative method 2 (first | ding $p$ | ce per GWh) |
|  | $14.4 \times 1000000$ <br> or $14400000$ | M1 | oe |
|  | $\begin{aligned} & \text { their } 14400000 \times 4189 \div \\ & 100 \\ & \text { or } \\ & 603216000 \end{aligned}$ | M1 | oe |
|  | ```603216000 or 603000 000 and Yes``` | A1 | oe |
|  | Additional Guidance |  |  |
|  | Accept all values in standard form |  |  |
|  | Accept comparison in pence with 60000000000 seen |  |  |
|  | Condone recovery to pounds after working in pence with division by 100 not seen |  |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 2 (d) | Alternative method 1 |  |  |
|  | $\begin{aligned} & 7700 \div 26.9 \text { or } 286.2(4 \ldots) \\ & \text { or } 286.25 \\ & \text { or } \\ & 7700 \div 0.269 \end{aligned}$ | M1 | oe |
|  | [28 490, 28644] | A1 |  |
|  | Alternative method 2 |  |  |
|  | $\begin{aligned} & 7700 \times 73.1 \div 26.9 \\ & \text { or } 20924 .(5 \ldots) \\ & \text { or } 20925 \end{aligned}$ | M1 | oe |
|  | [28 490, 28644] | A1 |  |
|  | Additional Guidance |  |  |
|  | Ignore further rounding after answer in interval seen |  |  |


| Q | Answer | Mark |  |
| :---: | :--- | :--- | :--- |
|  | Any valid reason <br> eg <br> The amount of electricity <br> produced by each nation is <br> not the same <br> England produces more <br> electricity than Scotland <br> He should have worked <br> out a weighted mean <br> He should have worked <br> out the total energy <br> generated by renewables <br> as a percentage of the <br> overall total <br> He should have used <br> actual values (rather than <br> percentages) <br> You can't always just <br> average percentages <br> Each percentage is the <br> percentage of its own <br> country, not the UK as a <br> whole <br> He has calculated the <br> mean percentage based <br> on each country's total, not <br> the UK as a whole | E1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :--- |
| 3 (a) | 0.1 | B1 | oe fraction, decimal or percentage |


| Q | Answer | Mark |  |
| :---: | :--- | :---: | :--- |
| 3 (b) | $50 \times 0.15$ or 7.5(0) <br> or <br> $20 \times 0.55$ or 11 <br> or <br> $10 \times 0.2$ or 2 | M1 <br> $50 \times 0.15+20 \times 0.55+$ <br> $10 \times 0.2$ <br> or <br> their $7.5+$ their $11+$ their 2 <br> or <br> 20.5 | M1dep |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 4 (a) | Alternative method 1 |  |  |
|  | 1-0.95 or 0.05 | M1 | oe |
|  | their $0.05 \times 1300$ | M1dep |  |
|  | (£)65 | A1 |  |
|  | Does not recommend insurance (as expected value is less than $£ 70$ ) | E1ft | ft their expected value <br> ie recommends insurance if their expected value > $£ 70$ |
|  | Alternative method 2 |  |  |
|  | 1-0.95 or 0.05 | M1 | oe |
|  | $\begin{aligned} & 0.95 \times 70-0.05 \times(1300- \\ & 70) \\ & \text { or } \\ & 0.95 \times 70 \text { and } 0.05 \times \\ & (1300-70) \end{aligned}$ | M1dep |  |
|  | (£) 5 <br> or <br> (£) 66.5(0) and 61.5(0) | A1 |  |
|  | Does not recommend insurance (as it is expected to cost $£ 5$ more if she buys the policy) | E1ft | ft their expected value <br> ie recommends insurance if their expected value > $£ 70$ |


| Q | Answer | Mark | Comments |
| :---: | :--- | :--- | :--- |
|  | Any valid reason <br> eg if not recommended in <br> 4(a) <br> She cannot afford to pay <br> for medical costs if she has <br> an accident <br> She thinks the medical <br> costs will be higher than <br> estimated <br> She wants peace of mind | ft from their recommendation in 4(a) <br> if no recommendation in 4(a) then mark as <br> if not recommended |  |
| $\mathbf{4}$ (b) | The statistics could under- <br> estimate how many people <br> would claim | E1ft |  |
| eg if recommended in 4(a) <br> She cannot afford the <br> additional cost <br> She thinks the medical <br> costs will be lower than <br> estimated <br> The statistics could over- <br> estimate how many people <br> would claim <br> She may be covered <br> elsewhere |  |  |  |




| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :--- |
| $\mathbf{5}$ (c) | ACEGHIJLM | B1ft | ft or correct <br> ft their critical path which must start at A or <br> B and must finish at M |



| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 5 (e) (i) | 8 am or 08:00 | B1ft | oe <br> ft or correct <br> ft their earliest start time for activity H ie 5 pm - their earliest start time for activity H |
|  | Additional Guidance |  |  |
|  | ft Gantt chart or network diagram |  |  |
|  | Time must be between 7 am and 5 pm |  |  |


| Q | Answer | Mark | Comments |
| :---: | :--- | :--- | :--- |
|  | 1 pm or 13:00 | oe <br> ft or correct <br> ft the difference between <br> the latest finish time of activity M <br> and <br> the earlier of the start times of activities I <br> and K <br> or <br> (e) (ii) | B1 latest finish time of activity H <br> ie 7 am + their difference |
|  |  | Additional Guidance |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 6 (a) | Alternative method 1 |  |  |
|  | 1-0.974 or 0.026 | M1 | oe decimal, fraction or percentage |
|  | $\begin{aligned} & \text { their } 0.026 \times 0.02 \\ & \text { or } \\ & 0.00052 \end{aligned}$ | M1dep | oe decimal, fraction or percentage |
|  | 0.052 | A1 |  |
|  | Alternative method 2 (assumes number of trains, eg 1000) |  |  |
|  | $\begin{aligned} & 1000-(0.974 \times 1000) \text { or } \\ & (1-0.974) \times 1000 \\ & \text { or } \\ & 26 \end{aligned}$ | M1 | oe decimal, fraction or percentage |
|  | their $26 \times 0.02$ <br> or $0.52$ | M1dep | oe decimal, fraction or percentage |
|  | 0.052 | A1 |  |


| Q | Answer | Mark | Comments |
| :---: | :--- | :---: | :--- |
| $\mathbf{6 ( b )}$ | $3370 \div 57.6(\times 40.4)$ <br> or <br> $58.5(\ldots)(\times 40.4)$ <br> or <br> $3370 \div 0.576(\times 0.404)$ <br> or <br> $5850 .(\ldots)(\times 0.404)$ <br> or <br> $2363.6 \ldots$ or 2363.7 | M1 |  |
|  | 2363 or 2364 | A1 | accept 2360 |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 6 (c) | Valid comment eg the statistics are representative of Scotland as well as the UK | E1 |  |  |
|  | Additional guidance |  |  |  |
|  | The percentages haven't changed |  |  | E1 |
|  | The percentages are the same as in the table |  |  | E1 |
|  | That you can't have a fraction of a train |  |  | E0 |
|  | There were exactly 3370 trains late due to rail infrastructure |  |  | E0 |
|  | $1 \%$ of the trains late is 59 |  |  | E0 |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 7 (a) | 0.4 for No and 0.6 for Yes | B1 | oe fraction, decimal or percentage |  |
|  | 0.7 for Fewer than six and 0.3 for At least six | B1 | oe fraction, decim | tage |
|  |  | Addi | al guidance |  |
|  | Percentages without \% | eg 40 |  | B0 B0 |
|  |  | $0.7$ <br> 0.3 | Fewer than six <br> At least six |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 7 (b) | Alternative method 1 |  |  |
|  | their $0.6 \times$ their 0.7 or 0.42 | M1 | oe fraction, decimal or percentage |
|  | their $0.6 \times$ their 0.3 or 0.18 | M1 | oe fraction, decimal or percentage |
|  | $\begin{aligned} & \text { their } 0.42 \times 3 \times 200 \text { or } 252 \\ & \text { or } \\ & \text { their } 0.18 \times 12 \times 200 \text { or } \\ & 432 \end{aligned}$ | M1 |  |
|  | their $252+$ their 432 | M1 |  |
|  | 684 | A1ft | ft their diagram from 7(a) |
|  | Alternative method 2 |  |  |
|  | their $0.6 \times$ their 0.7 or 0.42 | M1 | oe fraction, decimal or percentage |
|  | their $0.6 \times$ their 0.3 or 0.18 | M1 | oe fraction, decimal or percentage |
|  | their $0.42 \times 3+0.18 \times 12$ or $3.42$ | M1 |  |
|  | their $3.42 \times 200$ | M1 |  |
|  | 684 | A1ft | ft their diagram in 7(a) |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
|  | Alternative method 1 |  |  |
|  | their $0.42 \times 3 \times(200-$ <br> 150) or 63 <br> or <br> their $0.18 \times 12 \times(200-$ <br> 150 ) or 108 | M1 | ft their probabilities from 7(a) or 7(b) |
|  | 600 + their 63 + their 108 | M1 |  |
|  | (£)771 | A1ft |  |
| 7 (c) | Do not recommend as the insurance is more than the expected costs <br> or <br> Do not recommend as the expected costs are only 684 <br> or <br> Do not recommend as the insurance is $£ 87$ more than the expected costs. | E1ft | ft their $£ 684$ from 7 (b) <br> must be consistent with their expected cost found using probabilities and their expected cost from 7(b) |

Alternative method 2

| their $0.42 \times 3 \times 150$ or 189 or <br> their $0.18 \times 12 \times 150$ or 324 | M1 | ft their probabilities from 7(a) or 7(b) |
| :---: | :---: | :---: |
| their 189 + their 324 | M1 |  |
| (£) 513 or (£) 87 | A1ft |  |
| Do not recommend as the expected income from the insurance is (£87) less than the cost of the policy | E1ft | must be consistent with their expected value found using probabilities |

