

Level 3 Certificate MATHEMATICAL STUDIES 1350/2C

Paper 2C Graphical Techniques

Mark scheme

June 2022

Version: 1.2 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Q	Answer	Mark	Comments
1 (a)	11 : 5	B1	

Q	Answer	Mark	Comments			
	Alternative method 1					
	10 × 1 and 15 × 2 and 25 × 2 and 20 × 3 and 5 × 3 and 5 × 4		allow one error or omission may be seen beside table			
	or					
	10 \times 1 and 40 \times 2 and 20 \times 3 and 5 \times 3 and 5 \times 4	M1				
	or					
1 (b)	10 and 30 and 50 and 60 and 15 and 20					
(d) I	or					
	10 and 80 and 60 and 15 and 20					
	185 with correct method	A1	may be implied by 185 + their assumed visitor spaces			
	185 and no		ft their 185 with			
			yes if their total < 185			
		E1ft	or			
			no if their total > 185			

Q	Answer	Mark	Comments			
	Alternative method 2 (interprets as a total of 3 and 4 spaces for all 4-bed and 5-bed properties)					
	10 × 1 and 15 × 2 and 25 × 2 and 20 × 3 and 3 and 4	М1	allow one error or omission may be seen beside table			
	or 10 × 1 and 40 × 2 and 20 × 3 and 3 and 4					
	10 and 30 and 50 and 60 and 3 and 4					
1 (b)	or 10 and 80 and 60 and 3 and 4					
cont	157 with correct method	A1				
	157 and yes	E1ft	ft their 157 with yes if their total < 157 or no if their total > 157			
	10 + 15 + 25 + 20 + 15 + 20 and 105 and yes			M0 A0 E1ft		
	185 may be implied, eg 10 + 80 + 60 + 15 + 20 + 40 = 225 (where 40 spaces assumed for visitor parking) and no			M1 A1 E1		
	185 and no with no method s	seen		M0 A0 E0		

Q	Answer	Mark	Comments			
	Alternative method 1					
	80 × 23 ÷ 100 or 18(4)	M1	implied by 9 or 8 for 2-bedro with no incorrect working	om flat in table		
	or					
	19					
	9	A1	no incorrect working number of 2-bedroom flats			
	31	B1ft	number of 2-bedroom house ft 40 – their 9 accept decima	s Is		
	Alternative method 2					
	80 × ((23 ÷ 100) – (10 ÷ 80))		implied by 9 or 8 for 2-bedro with no incorrect working	om flat in table		
1 (c)	or 80 × (0.23 – 0.125)	M1				
	or					
	8.4					
	9	A1	no incorrect working number of 2-bedroom flats			
	31	B1ft	number of 2-bedroom house ft 40 – their 9 accept decima	s Is		
	Additional Guidance					
	Award M1 for correct percentage calculation, even if 2-bedroom flat value is greater than 9					
	correct values from incorrect method score M0 A0 but can gain B1ft, eg					
	40 × 23 ÷ 100 or 9.2 and 9 a	and 31		M0 A0 B1ft		
	80 × 23 ÷ 100 or 18.4 and 8 and 32			M1 A0 B1ft		

Q	Answer	Mark	Comm	ents
	Any two valid improvements		E1 for one valid im	provement
	eg Spell out Northern Ireland Include 'other fuels'/the missing category in the key Break down renewables/fossil fuels into different types Add a title to the chart Show the amount of electricity		ignore any addition contradictory sugg	al but non- estions
2 (a)	generated in GWh, not the percentage Use pattern to better distinguish the fuel types or label the bars with the fuel type or reorder the bars (so that similar shades are not next to each other) Include grid lines Include more increments on the vertical axis Label the axes Make the gaps equal	E2	SC1 two or more e	rrors identified
	Add another bar for the whole UK/the UK average			
	Addi	tional Guid	lance	
	One correct error and one improvem	ient		E1 only
	Make the y-axis bigger			E0
	Make the y-axis more accurate		E0	
	Larger scale	E0		
	Use a separate bar chart for each co	ountry		E0
	Use a different type of chart			E0
	Use colour			E0

Q	Answer	Mark	Comments		
	Morning Record				
	Alternative method 1				
	110221 × 70 ÷ 100		ое		
	or	M1			
	// 154.(/) or // 155				
	77 154.(7) or 77 155				
	and	A1			
	Irue				
	Alternative method 2	Γ			
	78 105 ÷ 70 × 100		ое		
	or				
0 (1-)	111 578.(57)	M1			
2 (D)	or 111570				
	111578.(57) or 111579	۸1			
	True				
	Alternative method 3				
	78 105 ÷ 110 221 (× 100)		ое		
	or	M1	accept 71 or 0.71		
	70.8(6…) or 70.9 or 0.708(6…) or 0.709				
	70.8(6) or 70.9 or 0.708(6) or 0.709	A1	accept 71 or 0.71		
	True				

Q	Answer	Mark	Comments		
	Alternative method 4				
	(110221 – 78105) ÷ 110221 (× 100)		ое		
	or	M1			
2 (b)	32116 ÷ 110221 (× 100)				
cont	or				
	0.29(1) or 29(.1)				
	0.29(1) or 29(.1)				
	and	A1			
	True				

Q	Answer	Mark	Comments		
	Daily Bulletin Review				
	Alternative method 1 (comparing proportions of wind to other renewables)				
	78 105 – 33 791 or 129 + 11 228 + 32 957 or 44 314	M1			
	33791 ÷ their 44314 or 0.76() and 13 ÷ 17 or 0.76()	M1			
2 (b)	0.76() with full method seen and True	A1	oe percentage		
cont	Alternative method 2 (comparing multiplier from wind to other renewables)				
	78 105 – 33 791 or 129 + 11 228 + 32 957 or 44 314	M1			
	their 44 314 ÷ 33 791 = 1.3(1) and 17 ÷ 13 = 1.3(07) or 17 ÷ 13 = 1.31	M1	correct for their 44 314		
	1.3() with full method seen and True	A1	oe percentage		

Q	Answer	Mark	Comments		
	Alternative method 3 (what other renewables should be in 13 : 17)				
	78 105 - 33 791 or 129 + 11 228 + 32 957 or 44 314	M1			
	33791 ÷ 13 × 17 or 44 188.()	M1			
	44 188.() and 44 314 and True	A1			
2 (b) cont	Alternative method 4 (comparing one part of wind with one part of other renewables)				
	78 105 - 33 791 or 129 + 11 228 + 32 957 or 44 314	M1			
	33 791 ÷ 13 and their 44 314 ÷ 17	M1	oe eg 33 791 ÷ 13 or 2599 and 44 314 ÷ 2599 or 17.05		
	2599.(3…) and 2606.(7…) or 2607 and True	A1	allow 2600		

Q	Answer	Mark	Comments
	Alternative method 5 (findi	ng an app	roximately equivalent ratio)
	78 105 – 33 791 or 129 + 11 228 + 32 957 or 44 314	M1	
	33 791 ÷ [2533, 2685] and 44 314 ÷ [2533, 2685]	M1	both divisiors must be the same
2 (b) cont	33 791 ÷ [2533, 2685] and 44 314 ÷ [2533, 2685] and correct results for their divisor and True	A1	results may be rounded to 13 and 17 with divisor shown
	Alternative method 6 (work	king out ot	her renewables as 17 parts of total)
	78 105 – 33 791 or 129 + 11 228 + 32 957 or 44 314	M1	
	78 105 ÷ 30 × 17 or 44 259(.5) or 44 260	M1	
	44 259(.5) or 44 260 and 44 314 and True	A1	

Q	Answer	Mark	Comments			
	Alternative method 7 (working out wind as 13 parts of total)					
	78 105 ÷ 30 or 2603.5 or 2604	M1				
	their 2603.5 × 13 or 33845(.5) or 33846	M1				
	33 845(.5) or 33 846					
	and	A1				
	True					
	Alternative method 8 (comparing wind as a proportion of total renewables)					
	13 ÷ 30 or 0.43(3…)	M1				
2 (b)	33 791 ÷ 78 105 or 0.43(2)	M1				
cont	0.43 with full method seen		oe percentage			
	and	A1				
	True					
	Additional Guidance					
	Variations which mix alternat favours the student.	tive method	ds are acceptable. Choose the s	scheme that		
	Accept Yes for True					
	33 791 : 44 314 and 13 : 17.04(8) and True			M1 M1 A1		
	33 791 : 44 314 and 13 : 17.05 and True			M1 M1 A1		
	33 791 : 44 314 and 12.96(3) : 17 an	d True	M1 M1 A1		
	33 791 : 44 314 and 13 : 17 and True with no divisor shown			M1 M0 A0		

Q	Answer	Mark	Comments		
	Alternative method 1 (first finding GWh used)				
	4189 × 1 000 000		ое		
	or	M1			
	4 189 000 000				
	their 4 189 000 000 × 14.4 ÷ 100		oe		
	or	M1			
	603216000				
	603216000 or 603000000		ое		
	and	A1			
	Yes				
	Alternative method 2 (first	finding pr	ice per GWh)		
2 (a)	14.4 × 1 000 000		oe		
2 (C)	or	M1			
	14 400 000				
	their 14400000 × 4189 ÷ 100		oe		
	or	M1			
	603216000				
	603216000 or 603000000		ое		
	and	A1			
	Yes				
	Additional Guidance				
	Accept all values in standard form				
	Accept comparison in pence	with 60 00	0 000 000 seen		
	Condone recovery to pounds	after work	king in pence with division by 100 not seen		

Q	Answer	Mark	Comments		
	Alternative method 1				
	7700 ÷ 26.9 or 286.2(4) or 286.25 or 7700 ÷ 0.269	M1	oe		
	[28 490, 28 644]	A1			
2 (d)	Alternative method 2				
	7700 × 73.1 ÷ 26.9 or 20924.(5) or 20925	M1	oe		
	[28 490, 28 644]	A1			
	Additional Guidance				
	Ignore further rounding after answer in interval seen				

Q	Answer	Mark	Comments
	Any valid reason		ое
	eg		
	The amount of electricity produced by each nation is not the same		condone the sizes of the nations are not the same
	England produces more electricity than Scotland		
	He should have worked out a weighted mean		
2 (e)	He should have worked out the total energy generated by renewables as a percentage of the overall total	E1	
	He should have used actual values (rather than percentages)		
	You can't always just average percentages		
	Each percentage is the percentage of its own country, not the UK as a whole		
	He has calculated the mean percentage based on each country's total, not the UK as a whole		

Q	Answer	Mark	Comments
2 (0)	Number of enemies values correct 250 300	B1	
3 (a)	Maximum possible scores all correct 20000 250000 3000000	B2ft	B1 one or two maximum possible scores correct ft their number of enemies

Q	Answer	Mark	Comments
3(b)(i)	3.76 5.06 6.35	B2	B1 for one or two correct to 2dp or all correct but not to 2dp

Q	Answer	Mark	Comments		
	All points plotted correctly	B1ft	ft their values		
3(b)(ii)	Additional Guidance				
	Must be between the relevant gridlines eg 5.06 must be plotted between 5.0 and 5.2				

Q	Answer	Mark	Comme	nts	
3(b)(iii) Val Any traj play higi and Ass trer or Not and trer or Not and trer and Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass trer Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass tre Ass Ass tre A	Valid or likely Any indication that trajectory (gradient) of player two indicates a higher score at levels ≥ 6 and Assumption made about trend continuing or Not valid and Indication that they are unable to assume that the trend continues or Not valid and their graphs show a trajectory (gradient) of player two that does not indicate a higher score at levels ≥ 6 and Assumption made about	E2ft	E1 valid or likely and trajectory (gradient or ratiof player two indicates a levels ≥ 6 allow reference to trendliplayer two clearly above extrapolation comment risuggested contextualise example "Game rules material E1ft Not valid and their graphs show a trajectory player two that does not score at levels ≥ 6	te of improvement) higher score at ines if plotted and player 1 at level 6 nay be a d reason, for ay change"	
	Additional Guidance				
	Yes justified by rate of improvement quantified using values from the table			E0	
	Yes justified by the lines getting closer			E0	
	Yes justified by a steeper trajectory with no reference to level 6			E0	
	Yes because the trendlines show this and clearly shows trendlines have crossed by level 6 on the graph			E1	
	Yes if they (both players) improve at same rate they will score higher at level 6			E2	

Q	Answer	Mark	Comments
4 (a)	Horizontal line from $T = 4$ or Mark on curve at $T = 4$	M1	
	[1.8, 1.9]	A1	

Q	Answer	Mark	Commen	ts	
4 (b)	Yes and suitable comment or –1 and [–0.3, –0.7] seen and suitable comment	E1	eg rate of temperature ded (steeper) at lower masses condone positive values if conclusion is met	cline is greater of ice correct	
	Additional Guidance				
	Accept reference to gradient rather than rate				
	Accept 'greater' gradient if referring to the magnitude of the negative value				
	Goes down further between 0.2 and 0.3 than 2.0 to 2.1			E1	

Q	Answer	Mark	Comments		
	Alternative method 1				
	<i>C</i> = 22	B1			
	Substitutes in a valid coordinate (<i>m</i> , <i>T</i>)	M1	may be from table or graph values taken from graph condone error in reading of half a square eg condone (1.5, 6)		
4 (c)	Rearranges to give $B = \frac{T - C - 1.86m^2}{m}$ or Solves for <i>B</i> using correct algebraic manipulation with their values of <i>m</i> and <i>T</i>	M1	oe may be implied by correct final answer		
. (0)	<i>B</i> = [-13.93, -13]	A1	must be correct for their values ft their C		
	Alternative method 2				
	Substitutes in two valid coordinates to form two equations	M1	may be from table or graph values taken from graph condone error in reading of half a square eg condone (1.5, 6)		
	Eliminates one variable correctly	M1	using either substitution or elimination, a valid equation for either <i>B</i> or <i>C</i> must be seen based on their coordinates		
	<i>B</i> = [-14.72, -13.36]	A1			
	<i>C</i> = [21.43, 22.69]	A1			

Q	Answer	Mark	Comments	;	
	Not valid for $m > 2.5$ or Temperature cannot be less than temperature of ice or Model predicts	E1	Oe		
	increase				
4 (d)	Model only applicable to a starting temperature of 22°C		may refer to drinks or atmos temperature	spheric	
	Additional Guidance				
	Temperature will reach a mi	nimum limi	t	E1	
	Larger values of mass (> 2.5	E1			
	You cannot have a negative	E1			
	Doesn't show you where the	trend end	S	E0	

Q	Answer	Mark	Comments
5 (a)	112 × 2.12	M1	
	237.4(4) or 237	A1	

Q	Answer	Mark	Comments	i		
	[96, 97]	B1	correct lap time			
	their 237.44 × their [96, 97] ÷ 3600	M1	ft from 5(a) and their lap time			
	[6.162, 6.402]	A1ft	ft from 5(a) and their lap tim	e		
5 (b)	Additional Guidance					
- ()	Within working allow any correct truncation or rounding to at least two decimal places					
	If their 5(a) is 52.8(3) this leads to correct ft answer of [1.4, 1.4235]					
	Using lap time of 90s and 237.44 obtaining 5.936 B0 M1					
	Using lap time of 90s and 237 obtaining 5.925 B0 M ²					

Q	Answer	Mark	Comments	
5 (c)	Tangent seen at $t = 8$ seconds	M1	Valid tangents should be seen to touch th curve at coordinate (8, 280) but not cross the curve for $t > 3$	
	Gradient calculated using difference in speed difference in time	M1dep	must be correct for their tangent may be before or after unit conversion	
	[16, 25]	A1	(km/h) s ^{–1} implied by final answer	
	their [16, 25] ÷ 3600 × 1000	M1	oe unit conversion may be seen at any stage	
	[4.4, 6.95]	A1ft	ft their [16, 25]	
	Additional Guidance			
	If no tangent seen correct gradient implies awarding of first three marks			

Q	Answer	Mark	Comments	;	
6 (a)	Works out difference in <i>x</i> and Works out difference in <i>y</i>	M1	correct method or result for in the domain $5 \le x \le 38$	any two points	
	Gradient calculated using their difference in y their difference in x or [0.78, 0.834]	M1	oe implied by $y = [0.78, 0.834] \times x + C$ if fractions shown without working ensure they lie in the equivalent decimal range		
	Substitutes their gradient and a valid pair of coordinates into the form y = mx + C or C = [-1.16, 0.36]	M1	coordinates valid in the domain $5 \le x \le 38$ values taken from graph condone error in reading of half a square may be seen in any correct rearrangement of equation		
	<i>y</i> = [0.78, 0.834] <i>x</i> + [- 1.16, 0.36]	A1	oe fractions		
	Additional Guidance				
	The substitution into $y = mx + C$ must not include an arbitrary value of <i>C</i> read from the graph eg substituting into $y = mx + 2$				
	y = [0.78, 0.84]x + 2			M1 M1 M0 A0	

Q	Answer	Mark	Comments
6 (b)	$y = 0.001x^3 - 0.06x^2 + 32$	B1	

Q	Answer	Mark	Comment	ts	
6 (c)	[69, 70] – [22,24] or [45, 48] (metres)	M1			
	their [45, 48] ÷ 12	M1			
	[3.75, 4]	A1	Must be correct for their [45, 48] if seen		
	Additional Guidance				
	Correct answer in range with no working shown			M1 M1 A1	

Q	Answer	Mark	Comments
	0.5 $L_{o} = L_{o} (1 - e^{-10k})$ or $0.5 = 1 - e^{-10k}$	M1	oe
	$-10k = \ln(0.5)$ or k = 0.069(314) or 0.07	M1	oe
7	$85000 = L_{o}(1 - e^{-30k})$ or $85000 = L_{o}(1 - e^{-30 \times 0.069})$	M1	oe ft their <i>k</i>
	$L_{\rm o} = 85000 \div \left(1 - e^{-30 \times 0.069}\right)$ or [96861, 97275]	M1	ft their <i>k</i> implies previous M1
	$L = [96861, 97275] \times (1 - e^{-5 \times 0.069})$	M1	ft their k and their L_{o}
	[28262, 29000]	A1	