Level 3 Certificate MATHEMATICAL STUDIES 1350/2C

Paper 2C Graphical Techniques
Mark scheme
June 2022
Version: 1.2 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

[^0]| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}(\mathrm{a})$ | $11: 5$ | B1 | |

Q	Answer	Mark	Comments
1 (b)	Alternative method 1		
	$\begin{aligned} & 10 \times 1 \text { and } 15 \times 2 \text { and } \\ & 25 \times 2 \text { and } 20 \times 3 \text { and } \\ & 5 \times 3 \text { and } 5 \times 4 \\ & \text { or } \\ & 10 \times 1 \text { and } 40 \times 2 \text { and } \\ & 20 \times 3 \text { and } 5 \times 3 \text { and } 5 \times 4 \\ & \text { or } \\ & 10 \text { and } 30 \text { and } 50 \text { and } 60 \\ & \text { and } 15 \text { and } 20 \\ & \text { or } \\ & 10 \text { and } 80 \text { and } 60 \text { and } 15 \\ & \text { and } 20 \end{aligned}$	M1	allow one error or omission may be seen beside table
	185 with correct method	A1	may be implied by $185+$ their assumed visitor spaces
	185 and no	E1ft	ft their 185 with yes if their total < 185 or no if their total > 185

Q	Answer	Mark	Comments	
$1 \text { (b) }$cont	Alternative method 2 (interprets as a total of 3 and 4 spaces for all 4-bed and 5-bed properties)			
	10×1 and 15×2 and 25×2 and 20×3 and 3 and 4 or 10×1 and 40×2 and 20×3 and 3 and 4 or 10 and 30 and 50 and 60 and 3 and 4 or 10 and 80 and 60 and 3 and 4	M1	allow one error or omission may be seen beside table	
	157 with correct method	A1		
	157 and yes	E1ft	ft their 157 with yes if their total < 157 or no if their total > 157	
	Additional Guidance			
	$10+15+25+20+15+20$ and 105 and yes			M0 A0 E1ft
	185 may be implied, eg $10+80+60+15+20+40=225$ (where 40 spaces assumed for visitor parking) and no			M1 A1 E1
	185 and no with no method seen			MO A0 E0

Q	Answer	Mark	Comments
2 (b)	Morning Record		
	Alternative method 1		
	$110221 \times 70 \div 100$ or $77 \text { 154.(7) or } 77155$	M1	oe
	$\begin{aligned} & 77154 .(7) \text { or } 77155 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	
	Alternative method 2		
	$\begin{aligned} & 78105 \div 70 \times 100 \\ & \text { or } \\ & 111578 .(57 \ldots) \\ & \text { or } \\ & 111579 \end{aligned}$	M1	oe
	```111578.(57...) or 111579 and True```	A1	
	Alternative method 3		
	$\begin{aligned} & 78105 \div 110221(\times 100) \\ & \text { or } \\ & 70.8(6 \ldots) \text { or } 70.9 \text { or } \\ & 0.708(6 \ldots) \text { or } 0.709 \end{aligned}$	M1	oe accept 71 or 0.71
	```70.8(6\ldots..) or 70.9 or 0.708(6...) or 0.709 and True```	A1	accept 71 or 0.71


Q	Answer	Mark	Comments
2 (b) cont	Alternative method 4		
	$\begin{aligned} & (110221-78105) \div \\ & 110221(\times 100) \end{aligned}$ or $32116 \div 110221(\times 100)$ or $0.29(1 \ldots) \text { or 29(.1...) }$	M1	oe
	$\begin{aligned} & 0.29(1 \ldots) \text { or } 29(.1 \ldots) \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	

Q	Answer	Mark	Comments
$2 \text { (b) }$ cont	Daily Bulletin Review		
	Alternative method 1 (comparing proportions of wind to other renewables)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	```33791\divtheir 44 314 or 0.76(...) and 13\div17 or 0.76(...)```	M1	
	$0.76(\ldots)$ with full method seen   and   True	A1	oe percentage
	Alternative method 2 (comparing multiplier from wind to other renewables)		
	$78105-33791$   or $129+11228+32957$   or $44314$	M1	
	their $44314 \div 33791=$ 1.3(1...)   and $17 \div 13=1.3(07 \ldots)$   or $17 \div 13=1.31$	M1	correct for their 44314
	1.3(...) with full method seen   and   True	A1	oe percentage


Q	Answer	Mark	Comments
$2 \text { (b) }$ cont	Alternative method 3 (what other renewables should be in $13: 17$ )		
	$78105-33791$   or $129+11228+32957$   or $44314$	M1	
	$33791 \div 13 \times 17$   or $44 \text { 188.(...) }$	M1	
	44 188.(...)   and   44314   and   True	A1	
	Alternative method 4 (comparing one part of wind with one part of other renewables)		
	$78105-33791$   or $129+11228+32957$   or $44314$	M1	
	$\begin{aligned} & 33791 \div 13 \\ & \text { and } \\ & \text { their } 44314 \div 17 \end{aligned}$	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } \\ & 33791 \div 13 \text { or } 2599 \\ & \text { and } \\ & 44314 \div 2599 \text { or } 17.05 \end{aligned}$
	$\begin{aligned} & 2599 .(3 \ldots) \\ & \text { and } \\ & 2606 .(7 \ldots) \text { or } 2607 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1	allow 2600


Q	Answer	Mark	Comments
$2 \text { (b) }$cont	Alternative method 5 (finding an approximately equivalent ratio)		
	$78105-33791$   or $129+11228+32957$   or   44314	M1	
	$\begin{aligned} & 33791 \div[2533,2685] \\ & \text { and } \\ & 44314 \div[2533,2685] \end{aligned}$	M1	both divisiors must be the same
	```33791\div[2533, 2685] and 44314\div[2533, 2685] and correct results for their divisor and True```	A1	results may be rounded to 13 and 17 with divisor shown
	Alternative method 6 (working out other renewables as 17 parts of total)		
	$78105-33791$ or $129+11228+32957$ or 44314	M1	
	$\begin{aligned} & 78105 \div 30 \times 17 \text { or } \\ & 44259(.5) \text { or } 44260 \end{aligned}$	M1	
	```44259(.5) or 44260 and 44314 and True```	A1	


Q	Answer	Mark	Comments	
$2 \text { (b) }$ cont	Alternative method 7 (working out wind as 13 parts of total)			
	$\begin{aligned} & 78105 \div 30 \text { or } 2603.5 \text { or } \\ & 2604 \end{aligned}$	M1		
	$\begin{aligned} & \text { their } 2603.5 \times 13 \text { or } \\ & 33845(.5) \text { or } 33846 \end{aligned}$	M1		
	$\begin{aligned} & 33845(.5) \text { or } 33846 \\ & \text { and } \\ & \text { True } \end{aligned}$	A1		
	Alternative method 8 (comparing wind as a proportion of total renewables)			
	$13 \div 30$ or 0.43(3...)	M1		
	$\begin{aligned} & 33791 \div 78105 \text { or } \\ & 0.43(2 \ldots) \end{aligned}$	M1		
	0.43 with full method seen and True	A1	oe percentage	
	Additional Guidance			
	Variations which mix alternative methods are acceptable. Choose the scheme that favours the student.			
	Accept Yes for True			
	$33791: 44314$ and 13:17.04(8...) and True			M1 M1 A1
	33791 : 44314 and 13:17.05 and True			M1 M1 A1
	33791 : 44314 and 12.96(3...) : 17 and True			M1 M1 A1
	33791 : 44314 and 13:17 and True with no divisor shown			M1 M0 A0


Q	Answer	Mark	Comments
2 (c)	Alternative method 1 (first finding GWh used)		
	$\begin{aligned} & 4189 \times 1000000 \\ & \text { or } \\ & 4189000000 \end{aligned}$	M1	oe
	$\begin{aligned} & \text { their } 4189000000 \times 14.4 \\ & \div 100 \end{aligned}$   or $603216000$	M1	oe
	```603216000 or 603000 000 and Yes```	A1	oe
	Alternative method 2 (first	ding p	e per GWh)
	14.4×1000000 or 14400000	M1	oe
	$\begin{aligned} & \text { their } 14400000 \times 4189 \div \\ & 100 \\ & \text { or } \\ & 603216000 \end{aligned}$	M1	oe
	```603216000 or 603000000 and Yes```	A1	oe
	Additional Guidance		
	Accept all values in standard form		
	Accept comparison in pence with 60000000000 seen		
	Condone recovery to pounds after working in pence with division by 100 not seen		


Q	Answer	Mark	Comments
2 (d)	Alternative method 1		
	$\begin{aligned} & 7700 \div 26.9 \text { or } 286.2(4 \ldots) \\ & \text { or } 286.25 \\ & \text { or } \\ & 7700 \div 0.269 \end{aligned}$	M1	oe
	[28 490, 28644]	A1	
	Alternative method 2		
	$\begin{aligned} & 7700 \times 73.1 \div 26.9 \\ & \text { or } 20924 .(5 \ldots) \\ & \text { or } 20925 \end{aligned}$	M1	oe
	[28 490, 28644]	A1	
	Additional Guidance		
	Ignore further rounding after answer in interval seen		


Q	Answer	Mark	
	Any valid reason   eg   The amount of electricity   produced by each nation is   not the same   England produces more   electricity than Scotland   He should have worked   out a weighted mean   He should have worked   out the total energy   generated by renewables   as a percentage of the   overall total   He should have used   actual values (rather than   percentages)   You can't always just   average percentages	E1	
Each percentage is the   percentage of its own   country, not the UK as a   whole   He has calculated the   mean percentage based   on each country's total, not   the UK as a whole	condone the sizes of the nations are not   the same		


Q	Answer	Mark	Comments
$\mathbf{3}$ (a)	Number of enemies values   correct   250300	B1	
	Maximum possible scores   all correct   $20000 ~ 2500003000000$	B2ft	B1 one or two maximum possible scores   correct   ft their number of enemies


Q	Answer	Mark	Comments
3(b)(i)	3.765 .066 .35	B2	B1 for one or two correct to 2dp   or all correct but not to 2dp


Q	Answer	Mark	Comments
3(b)(ii)	All points plotted correctly	B1ft	ft their values
	Additional Guidance		
	Must be between the relevant gridlines eg 5.06 must be plotted between 5.0 and   5.2		


| Q | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- | :--- |
|  | Valid or likely <br> Any indication that <br> trajectory (gradient) of <br> player two indicates a <br> higher score at levels $\geqslant 6$ <br> and <br> Assumption made about <br> trend continuing <br> or <br> Not valid <br> and <br> Indication that they are <br> unable to assume that the <br> trend continues <br> or <br> vot valid likely <br> and <br> and <br> trajectory (gradient or rate of improvement) <br> of player two indicates a higher score at <br> levels $\geqslant 6$ |  |  |


Q	Answer	Mark	Comments
$\mathbf{4}$ (a)	Horizontal line from $T=4$   or   Mark on curve at $T=4$	M1	
	$[1.8,1.9]$	A1	


Q	Answer	Mark	Comments	
4 (b)	Yes   and   suitable comment   or   -1 and $[-0.3,-0.7]$ seen and   suitable comment	E1	eg rate of temperature decline is greater (steeper) at lower masses of ice   condone positive values if correct conclusion is met	
	Additional Guidance			
	Accept reference to gradient rather than rate			
	Accept 'greater' gradient if referring to the magnitude of the negative value			
	Goes down further between 0.2 and 0.3 than 2.0 to 2.1			E1


Q	Answer	Mark	Comments
4 (c)	Alternative method 1		
	$C=22$	B1	
	Substitutes in a valid coordinate ( $m, T$ )	M1	may be from table or graph   values taken from graph condone error in reading of half a square   eg condone $(1.5,6)$
	Rearranges to give $B=$ $\frac{T-C-1.86 m^{2}}{m}$   or   Solves for $B$ using correct algebraic manipulation with their values of $m$ and $T$	M1	oe   may be implied by correct final answer
	$B=[-13.93,-13]$	A1	must be correct for their values ft their $C$
	Alternative method 2		
	Substitutes in two valid coordinates to form two equations	M1	may be from table or graph   values taken from graph condone error in reading of half a square   eg condone (1.5, 6)
	Eliminates one variable correctly	M1	using either substitution or elimination, a valid equation for either $B$ or $C$ must be seen based on their coordinates
	$B=[-14.72,-13.36]$	A1	
	$C=[21.43,22.69]$	A1	



Q	Answer	Mark	Comments
$\mathbf{5}$ (a)	$112 \times 2.12$	M1	
	$237.4(4)$ or 237	A1	


Q	Answer	Mark	Comments	
5 (b)	[96, 97]	B1	correct lap time	
	their $237.44 \times$ their [ 96 , $97] \div 3600$	M1	ft from 5(a) and their lap time	
	[6.162, 6.402]	A1ft	ft from 5(a) and their lap time	
	Additional Guidance			
	Within working allow any correct truncation or rounding to at least two decimal places			
	If their $5(\mathrm{a})$ is $52.8(3)$ this leads to correct ft answer of [1.4, 1.4235]			
	Using lap time of 90s and 237.44 obtaining 5.936			B0 M1 A1ft
	Using lap time of 90s and 237 obtaining 5.925			B0 M1 A1ft


Q	Answer	Mark	Comments
5 (c)	Tangent seen at $t=8$ seconds	M1	Valid tangents should be seen to touch the curve at coordinate $(8,280)$ but not cross the curve for $t>3$
	Gradient calculated using difference in speed difference in time	M1dep	must be correct for their tangent may be before or after unit conversion
	[16, 25]	A1	$(\mathrm{km} / \mathrm{h}) \mathrm{s}^{-1}$   implied by final answer
	$\begin{aligned} & \text { their }[16,25] \div 3600 \times \\ & 1000 \end{aligned}$	M1	oe   unit conversion may be seen at any stage
	[4.4, 6.95]	A1ft	ft their [16, 25]
	Additional Guidance		
	If no tangent seen correct gradient implies awarding of first three marks		


Q	Answer	Mark	Comments
6 (a)	Works out difference in $x$ and   Works out difference in $y$	M1	correct method or result for any two points in the domain $5 \leqslant x \leqslant 38$
	Gradient calculated using their differencein $y$ their difference in $x$ or $[0.78,0.834]$	M1	oe   implied by $y=[0.78,0.834] \times x+C$   if fractions shown without working ensure they lie in the equivalent decimal range
	Substitutes their gradient and a valid pair of coordinates into the form $y=m x+C$   or $C=[-1.16,0.36]$	M1	coordinates valid in the domain $5 \leqslant x \leqslant 38$ values taken from graph condone error in reading of half a square   may be seen in any correct rearrangement of equation
	$\begin{aligned} & y=[0.78,0.834] x+[- \\ & 1.16,0.36] \end{aligned}$	A1	oe fractions

## Additional Guidance

The substitution into $y=m x+C$ must not include an arbitrary value of $C$ read from the graph eg substituting into $y=m x+2$

$y=[0.78,0.84] x+2$	M1 M1 M0 A0


Q	Answer	Mark	Comments
$\mathbf{6 ~ ( b ) ~}$	$y=0.001 x^{3}-0.06 x^{2}+32$	B1	


Q	Answer	Mark	Comments		
$\mathbf{6}$ (c)	$[69,70]-[22,24]$   or   $[45,48]$ (metres)	M1			
	their $[45,48] \div 12$	M1			
	$[3.75,4]$	A1	Must be correct for their [45, 48] if seen		
	Additional Guidance				
	Correct answer in range with no working shown				M1 M1 A1


Q	Answer	Mark	Comments
7	$0.5 L_{\mathrm{o}}=L_{0}\left(1-e^{-10 k}\right)$   or $0.5=1-e^{-10 k}$	M1	oe
	$-10 k=\ln (0.5)$   or $k=0.069(314 \ldots) \text { or } 0.07$	M1	oe
	$85000=L_{0}\left(1-e^{-30 k}\right)$   or $85000=L_{0}\left(1-e^{-30 \times 0.069}\right)$	M1	oe   ft their $k$
	$L_{\mathrm{o}}=85000 \div\left(1-e^{-30 \times 0.069}\right)$   or $\text { [96861, } 97275]$	M1	ft their $k$   implies previous M1
	$L=[96861,97275] \times\left(1-e^{-5 \times 0.069}\right)$	M1	ft their $k$ and their $L_{\text {。 }}$
	[28262, 29000]	A1	


[^0]:    AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.
    Copyright © 2022 AQA and its licensors. All rights reserved.

