

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

AS **MATHEMATICS**

Paper 1

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
TOTAL		

Section A

Answer all questions in the spaces provided.

Express as a single logarithm 1

$$\log_{10} 2 - \log_{10} x$$

Circle your answer.

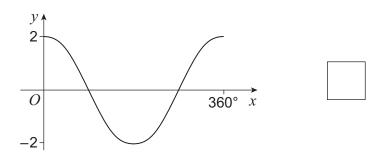
[1 mark]

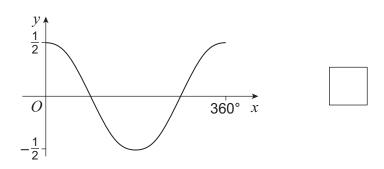
$$\log_{10}(2+x)$$

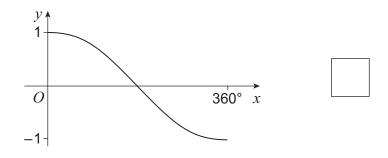
$$\log_{10}(2+x)$$
 $\log_{10}(2-x)$ $\log_{10}(2x)$

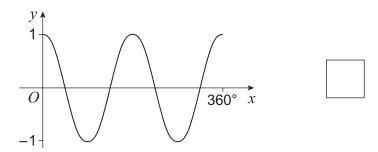
$$\log_{10}(2x)$$

$$\log_{10}\left(\frac{2}{x}\right)$$




The graph of the function $y = \cos \frac{1}{2}x$ for $0^{\circ} \le x \le 360^{\circ}$ is one of the graphs shown below.


Identify the correct graph.


Tick (✓) one box.

[1 mark]

3	Find the coefficient of the x^3 term in the expansion of $\left(3x + \frac{1}{2}\right)^4$	[3 marks]
	-	

Find all the solutions of the equation			
$\cos^2 \theta = 10 \sin \theta + 4$			
for $0^{\circ} < \theta < 360^{\circ}$, giving your answers to the nearest degree.			
Fully justify your answer.	[F]		
	[5 marks]		
Turn over for the next question			
	$\cos^2\theta=10\sin\theta+4$ for $0^\circ<\theta<360^\circ$, giving your answers to the nearest degree. Fully justify your answer.		

5	Express $3x^3 + 5x^2 - 27x + 10$ in the form $(x-2)(ax^2 + bx + c)$, where a , b and a are integers	
	are integers.	[3 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 7

6	AB is a diameter of a circle where A is $(1, 4)$ and B is $(7, -2)$	
6 (a)	Find the coordinates of the midpoint of AB.	[1 mark]
6 (b)	Show that the equation of the circle may be written as	
	$x^2 + y^2 - 8x - 2y = 1$	[4 marks]

6 (c)	The circle has centre <i>C</i> and crosses the <i>x</i> -axis at points <i>D</i> and <i>E</i> .	
	Find the exact area of triangle DEC.	[4 marks]
	-	

7	A curve has equation $y = a^2 - x^2$, where $a > 0$	
	The area enclosed between the curve and the x -axis is 36 units.	
	Find the value of <i>a</i> .	
	Fully justify your answer.	[6 marks]
		
		· · · · · · · · · · · · · · · · · · ·

11 Do not write outside the box Turn over for the next question

Turn over ▶

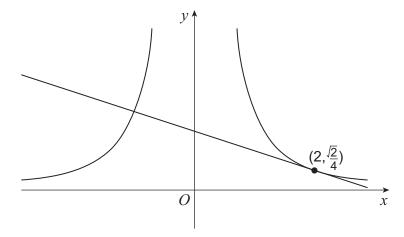
8	A curve has equation
	$y = x^3 - 6x + \frac{9}{x}$
8 (a)	Show that the x coordinates of the stationary points of the curve satisfy the equation
	$x^4 - 2x^2 - 3 = 0$ [3 marks]
	·
8 (b)	Deduce that the curve has exactly two stationary points. [3 marks]

8 (c)	Find the coordinates and nature of the two stationary points.
	Fully justify your answer.
	[4 marks]
8 (d)	Write down the equation of a line which is a tangent to the curve in two places. [1 mark]
	[1 mark]
	Turn over for the next avestion
	Turn over for the next question

9	Integers m and n are both odd.		
	Prove that $m^2 + n^2$ is a multiple of 2 but not a multiple of 4	[5 marks]	

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

1 5


Turn over ▶

- 10 Curve C has equation $y = \frac{\sqrt{2}}{x^2}$
- 10 (a) Find an equation of the tangent to C at the point $\left(2, \frac{\sqrt{2}}{4}\right)$

[4 marks]

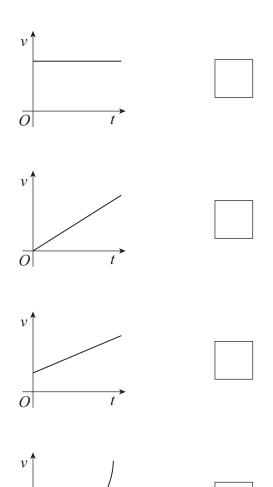
10 (b) Show that the tangent to C at the point $\left(2, \frac{\sqrt{2}}{4}\right)$ is also a normal to the curve at a different point.

[5 marks]

Turn over for Section B

Section B

Answer all questions in the spaces provided.


A car, initially at rest, moves with constant acceleration along a straight horizontal road.

One of the graphs below shows how the car's velocity, $v \, \text{m} \, \text{s}^{-1}$, changes over time, t seconds.

Identify the correct graph.

Tick (✓) one box.

[1 mark]

12	A horizontal force of 30 N straight line, on a smooth			eleration of $2 \mathrm{m}\mathrm{s}^{-2}$, in a
	Find the weight of the cr	ate.		
	Circle your answer.			[1 mark]
	15 kg	15 <i>g</i> N	15 N	15 <i>g</i> kg
13	Two points <i>A</i> and <i>B</i> lie in respectively.	a horizontal plane	and have coordina	ates (-2, 7) and (3, 19)
	A particle moves in a stra force of magnitude 6.5 N	aight line from A to	B under the action	of a constant resultant
	Express the resultant for	ce in vector form.		[3 marks]
				_

When the ball reaches	the ground, its speed is $v \mathrm{m} \mathrm{s}^{-1}$, where	e $v \leq 10$
Show that		
	50	
	$h \leq rac{50}{g}$	
		[3

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

2 1

15	Two particles, <i>P</i> and <i>Q</i> , are initially at rest at the same point on a horizontal plane.	
	A force of $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$ N is applied to P .	
	A force of $\begin{bmatrix} 8 \\ 15 \end{bmatrix}$ N is applied to Q.	
15 (a)	Calculate, to the nearest degree, the acute angle between the two forces. [2 mark	s]
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

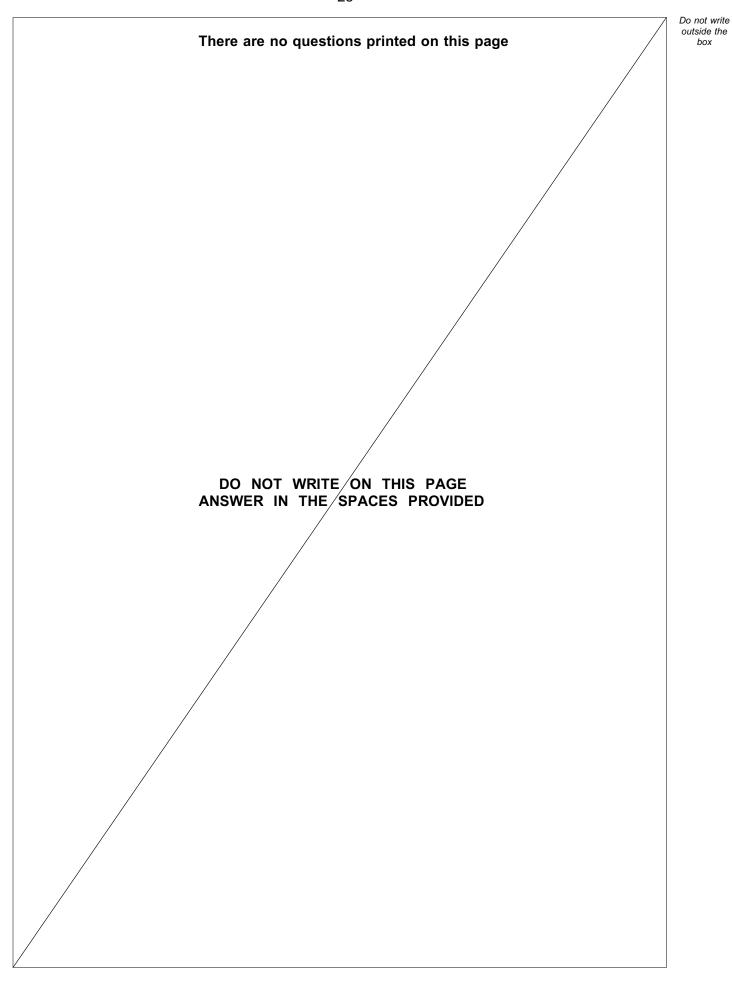
15 (b)	The particles begin to move under the action of the respective forces.	
	P and Q have the same mass.	
	P has an acceleration of magnitude $5\mathrm{ms^{-2}}$	
	Find the magnitude of the acceleration of Q.	[3 marks]

16	Jermaine and his friend Meena are walking in the same direction along a stra	ght path.
	Meena is walking at a constant speed of $u \mathrm{m} \mathrm{s}^{-1}$	
	Jermaine is walking $0.2\mathrm{ms^{-1}}$ more slowly than Meena.	
	When Jermaine is d metres behind Meena he starts to run with a constant acceleration of $2\mathrm{ms^{-2}}$, for a time of t seconds, until he reaches her.	
16 (a)	Show that	
	$d=t^2-0.2t$	4 marks]

16 (b)	When Jermaine's speed is $7.8\mathrm{ms^{-1}}$, he reaches Meena.	
	Given that $u = 1.4$ find the value of d .	
		[2 marks]
		·

17

A car and caravan, connected by a tow bar, move forward together along a horizontal road.


Their velocity $v \, \mathrm{m} \, \mathrm{s}^{-1}$ at time t seconds, for $0 \leq t < 20$, is given by

	$v = 0.5t + 0.01t^2$	
17 (a)	Show that when $t = 15$ their acceleration is $0.8 \mathrm{ms^{-2}}$	[2 marks]
17 (b)	The car has a mass of 1500 kg	
	The caravan has a mass of 850 kg	
	When $\it t = 15$ the tension in the tow bar is 800 N and the car experiences a force of 100 N	resistance
17 (b) (i)	Find the total resistance force experienced by the caravan when $t=15$	[2 marks]

17 (b) (ii)	Find the driving force being applied by the car when $t=15$	[3 marks]
17 (c)	State one assumption you have made about the tow bar.	[1 mark]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after

each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

