AQAE

Surname

Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature \qquad
I declare this is my own work.
AS

CHEMISTRY

Paper 1 Inorganic and Physical Chemistry
7404/1

Time allowed: 1 hour 30 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

You are advised to spend about 65 minutes on SECTION A and 25 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.
\square
This question is about ionisation energies of Group 2 elements.

\section*{| 0 | 1 |
| :--- | :--- |}

Explain why the first ionisation energy of the Group 2 elements decreases down the group. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

0	1.

Give an equation, including state symbols, to represent the process that occurs when the third ionisation energy of magnesium is measured. [1 mark]

0	1	3

Explain why the third ionisation energy of magnesium is much higher than the second ionisation energy of magnesium. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| 0 | 2 |
| :--- | :--- |}

This question is about acid-base titrations.
Citric acid reacts with sodium hydroxide.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow$
$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
0.2. 1

A student makes a solution of citric acid by dissolving some solid citric acid in water.

Describe a method to add an accurately known mass of solid to a beaker to make a solution. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	2	2

The student dissolves 0.834 g of citric acid in water and makes the solution up to $500 \mathrm{~cm}^{3}$

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of citric acid in this solution. [3 marks]

Concentration \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
[Turn over]

0	2

The student uses this method to complete a titration.

- Rinse a burette with distilled water.
- Fill the burette with sodium hydroxide solution.
- Use a measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of the citric acid solution into a conical flask.
- Add 5 cm ${ }^{3}$ of indicator.
- Slowly add the sodium hydroxide solution from the burette into the conical flask.
- Add the sodium hydroxide solution dropwise near the end point until the indicator just changes colour.
- Repeat the titration to get concordant results.

The method used by the student includes three practical steps that will lead to an inaccurate final result.

For each of these three steps

- identify the mistake
- explain why it is a mistake
- suggest how the mistake can be overcome.
[6 marks]

[Turn over]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

0.2 . 4

TABLE 1 shows the student's burette readings after the mistakes in the practical procedure have been corrected.

TABLE 1

	ROUGH	RUN 1	RUN 2	RUN 3
FINAL READING $/ \mathrm{cm}^{3}$	23.65	22.95	46.05	26.30
START READING $/ \mathrm{cm}^{3}$	0.00	0.00	22.95	3.40
TITRE $/ \mathrm{cm}^{3}$	23.65			

Complete TABLE 1.
Use the data in TABLE 1 to calculate the mean titre.
[2 marks]

Mean titre cm^{3}
0.2 . 5

The total uncertainty in the use of the burette is $\pm 0.15 \mathrm{~cm}^{3}$

Calculate the percentage uncertainty in the use of the burette in RUN 1. [1 mark]

Percentage uncertainty \qquad
[Turn over]
\square

BLANK PAGE

\section*{| 0 | 3 |
| :--- | :--- |}

This question is about shapes of molecules.
Complete TABLE 2 by drawing the shapes of both the AsF_{5} and KrF_{2} molecules, showing all lone pairs of electrons that influence the shape.

Deduce the bond angle(s) in AsF_{5}
[3 marks]
TABLE 2

	AsF $_{5}$	KrF_{2}
DIAGRAM OF		
SHAPE		
BOND ANGLE(S)		

[^0]
0| 4

This question is about intermolecular forces.

0	4	1

Complete the diagram to show how one molecule of ammonia can form a hydrogen bond with one molecule of ethanol.
Include all lone pairs of electrons and partial charges on atoms involved in the hydrogen bond. [3 marks]

TABLE 3 shows the electronegativity values of atoms of some elements.

TABLE 3

ATOM	H	C	N	O	Br
ELECTRONEGATIVITY	2.1	2.5	3.0	3.5	2.8

0	4	2

Define the term electronegativity. [1 mark]
\qquad
\qquad
\qquad

0	4	3

Deduce the TWO atoms from TABLE 3 that will form the most polar bond. [1 mark]
[Turn over]

0.4 .4

The $\mathrm{C}-\mathrm{Br}$ bond is polar.
Explain why CBr_{4} is NOT a polar molecule. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
0.4 . 5

Suggest, in terms of the intermolecular forces for each compound, why CBr_{4} has a higher boiling point than CHBr_{3} [3 marks]
\qquad
\qquad
\qquad
[Turn over]

$0 \mid 5$

A sample of antimony is analysed in a time of flight (TOF) mass spectrometer and is found to contain two isotopes, ${ }^{121} \mathrm{Sb}$ and ${ }^{123} \mathrm{Sb}$

After electron impact ionisation, all of the ions are accelerated to the same kinetic energy (KE) and then travel through a flight tube that is 1.05 m long.
$\mathrm{A}^{121} \mathrm{Sb}^{+}$ion takes $5.93 \times 10^{-4} \mathrm{~s}$ to travel through the flight tube.

The kinetic energy of an ion is given by the equation $K E=\frac{1}{2} m v^{2}$
$K E=$ kinetic energy $/ J$
m = mass / kg
$v=$ speed $/ \mathrm{m} \mathrm{s}^{-1}$
Calculate the mass, in kg , of one ${ }^{121} \mathrm{Sb}^{+}$ion.
Calculate the time taken for a ${ }^{123} \mathbf{S b}^{+}$ion to travel through the same flight tube.

The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ [5 marks]
Mass of one ${ }^{121} \mathbf{S b}^{+}$ion ___ kg

Time taken by a ${ }^{123} \mathbf{S b}^{+}$ion S
[Turn over]
$0 \mid 6$
lodide ions can be oxidised to iodine using oxidising agents such as iodate(V) ions $\left(\mathrm{IO}_{3}{ }^{-}\right)$and concentrated sulfuric acid.

0	6	.1

State, in terms of electrons, the meaning of the term oxidising agent. [1 mark]

In acidic solution, $\mathrm{IO}_{3}{ }^{-}$ions oxidise iodide ions to iodine.

$$
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

\square
Give a half-equation for the oxidation of iodide ions to iodine.

Deduce the half-equation to show the reduction process in this reaction. [2 marks]

Oxidation half-equation

Reduction half-equation

[Turn over]

0	6	3

When iodide ions are oxidised using concentrated sulfuric acid, sulfur dioxide, a yellow solid and a foul-smelling gas are all formed.

Give an equation to show the reaction between iodide ions and concentrated sulfuric acid to form the yellow solid.

Identify the foul-smelling gas. [2 marks]
Equation

Identity of foul-smelling gas

BLANK PAGE

[Turn over]

07

This question is about gaseous equilibria.
FIGURE 1 shows the effect of pressure on the percentage yield of a reaction at equilibrium at two different temperatures.

FIGURE 1

Percentage
yield

Pressure

0.7. 1

Explain how FIGURE 1 shows that the forward reaction in this equilibrium is exothermic. [2 marks]

[Turn over]

0.7 .2

State whether the forward reaction in this equilibrium results in an increase, decrease or no change in the amount, in moles, of gas.

Explain your answer. [3 marks]
Tick (\checkmark) ONE box.

increase

decrease
\square no change

Explanation

\qquad
\qquad
\qquad
\qquad
\qquad

0.7 .3

Explain why using a catalyst has no effect on the percentage yield. [1 mark]
[Turn over]

Hydrogen and nitrogen react to form ammonia.
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
At 745 K , the equilibrium constant, $K_{\mathrm{c}}=0.118 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$

0	7	4

At $745 \mathrm{~K}, 0.150 \mathrm{dm}^{3}$ of an equilibrium mixture contains 0.0285 mol of hydrogen and 0.0870 mol of nitrogen.

Calculate the amount, in moles, of ammonia present in this equilibrium mixture. [5 marks]
\qquad mol
0.7 .5

Calculate the value, at 745 K , for the equilibrium constant K_{c} for this dissociation of ammonia to give hydrogen and nitrogen.

State the units.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$
[2 marks]

Value
Units \qquad
[Turn over]

0	8

A student does two test-tube reactions on four colourless solutions (A, B, C and D).

TABLE 4 shows the student's observations.

TABLE 4

SOLUTION	TEST 1 Add $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathbf{s})$	TEST 2 Add acidified AgNO (aq)

\section*{| 0 | 8 | 1 |
| :--- | :--- | :--- |}

Identify the gas formed in TEST 1.
Describe a further test to confirm the identity of this gas. [2 marks]

Identity of gas
Test
[Turn over]

BLANK PAGE

0.8 .2

Explain how the observations from TEST 1 and TEST 2, on page 34, can be used to show that solution B contains hydrochloric acid. [2 marks]
[Turn over]

REPEAT OF TABLE 4

SOLUTION	TEST 1 Add $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathbf{s})$	TEST 2 Add acidified AgNO (aq)

0	8

Describe a series of tests that the student can use to show that solution C contains ammonium sulfate.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| 0 | 8 | 4 |
| :--- | :--- | :--- |}

The student does an additional experiment to show that solution D contains a mixture of halide ions. One of the halide ions is chloride.

Method:

> Step 1 Add an excess of $\mathrm{AgNO}_{3}(\mathrm{aq})$ to $10.0 \mathrm{~cm}^{3}$ of solution D.

Step 2 Filter, wash, dry and weigh the precipitate.
Step 3 Add an excess of dilute ammonia to the dry precipitate.

Step 4 Filter, wash, dry and weigh the solid that remains.

Explain how the masses recorded during this experiment can be used to show that solution D contains a mixture of halide ions. [2 marks]
\qquad
\qquad
\qquad
[Turn over]

SECTION B

Answer ALL questions in this section.
Only ONE answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do NOT use additional sheets for this working.

019
Which atom has two more protons and two more neutrons than ${ }_{24}^{52} \mathrm{Cr}$? [1 mark]

○
 A ${ }_{26}^{54} \mathrm{Cr}$

B ${ }_{26}^{56} \mathrm{Cr}$0
C ${ }_{26}^{54} \mathrm{Fe}$
$\bigcirc \quad$ D $\quad{ }_{26}^{56} \mathrm{Fe}$
[Turn over]
10

An atom has all its electrons in their lowest energy levels.

Which atom contains only two unpaired electrons? [1 mark]
-
A Helium
-
B Beryllium
0
C Oxygen
0
D Iron

1 1 1

The first six ionisation energies, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of an element are:

1090, 2350, 4610, 6220, 37 800, 47000
What is the element? [1 mark]
O A Boron

O B Carbon

O C Nitrogen
0
D Oxygen
[Turn over]

12

In which pair is the first ionisation energy of atom Y greater than that of atom X? [1 mark]

		Electron configuration of atom X	Electron configuration of atom Y
\bigcirc	A	1s ${ }^{\mathbf{2}} \mathbf{2 s}^{\mathbf{2}}$	1s ${ }^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{1}$
\bigcirc	B	$1 s^{2} 2 s^{2} 2 p^{3}$	1s ${ }^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{4}$
\bigcirc	C	$1 s^{2} 2 s^{2} 2 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{6}$
\bigcirc	D	$1 s^{2} 2 s^{2} 2 p^{6}$	1s ${ }^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{6} \mathbf{3 s}{ }^{\mathbf{1}}$

Which statement about isotopes of an element is NOT correct? [1 mark]

○ A They have the same chemical properties.

B They have the same number of electrons in ions of the same charge.

C They have the same number of neutrons.

D They have the same number of protons.
[Turn over]

$1 \mid 4$

5.0 g of an oxide contains 4.0 g of molybdenum.

What is the empirical formula of this oxide? [1 mark]
$\bigcirc \quad \mathrm{A} \mathbf{M o O}_{\mathbf{2}}$
$\bigcirc \quad B \mathrm{MoO}_{5}$
$\bigcirc \quad \mathrm{C} \mathrm{Mo}_{2} \mathrm{O}_{3}$
0
D $\mathrm{Mo}_{3} \mathrm{O}_{2}$
15

The equation for a reaction is
$\mathrm{AsH}_{3}{ }^{+} \mathrm{H}^{+} \longrightarrow \mathrm{AsH}_{\mathbf{4}}{ }^{\mathbf{+}}$
What type of interaction forms in this reaction?
[1 mark]

O A Co-ordinate bond

O B Dipole-dipole force
-
C Hydrogen bond

0
D Ionic bond
[Turn over]

Which is a correct trend down Group 7 from fluorine to iodine? [1 mark]

A The boiling point of the element decreases.

B The oxidising ability of the element
decreases.

C The electronegativity of the atom increases.

D The first ionisation energy of the atom increases.

17

Which of these ions has the largest ionic radius?
[1 mark]
$\bigcirc \quad$ A \mathbf{s}^{2-}

O $\quad \mathrm{B} \mathrm{Cl}^{-}$
$\bigcirc \quad \mathrm{C} \mathrm{K}^{+}$

O $\mathrm{DCa}^{\mathbf{2 +}}$
[Turn over]

18

Which statement is correct? [1 mark]

A Chloride ions reduce concentrated sulfuric acid to form sulfur dioxide.

B Bromide ions reduce concentrated sulfuric acid to form sulfur.

C Bromide ions reduce iodine to form iodide ions.

0
D lodide ions reduce chlorine to form chloride ions.

| 19 |
| :--- | :--- |

In which of these substances is oxygen in the highest oxidation state? [1 mark]

$\bigcirc \quad \mathbf{A} \mathbf{O F}_{\mathbf{2}}$

$\bigcirc \quad B \quad \mathbf{H}_{2} \mathbf{O}$
$\square \quad C \quad \mathbf{O}_{2}$
$\bigcirc \quad D \mathbf{H}_{2} \mathbf{O}_{\mathbf{2}}$
[Turn over]

20

Which block in the Periodic Table contains the element samarium (Sm)? [1 mark]B f block
0
C p block
0
D s block

$2 \mid 1$

Which species is NOT a possible product of the reactions between chlorine and water? [1 mark]
$\bigcirc \quad \mathrm{A} \mathrm{Cl}^{-}$

O $\mathrm{B} \mathrm{ClO}^{-}$C O_{2}

0
D OH^{-}
[Turn over]

$2 \mid 2$

Which statement is correct? [1 mark]

A Magnesium reacts with steam to give magnesium oxide as one of the products.

B Magnesium acts as an oxidising agent in the extraction of titanium.

C Magnesium has a lower melting point than sodium.

0
D Magnesium hydroxide is very soluble in water.

$2 \mid 3$

Which is NOT responsible for conducting electricity?
[1 mark]

A The sodium ions in molten sodium chloride

B The electrons between layers of carbon
atoms in graphite
-
C The bonding electrons in a metal

D The lone pair electrons in liquid water molecules

END OF QUESTIONS

$|$| Additional page, if required. |
| :--- |
| Write the question numbers in the left-hand margin. |

\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/NC/Jun22/7404/1/E1

[^0]: [Turn over]

