Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
A-level
CHEMISTRY
Paper 2 Organic and Physical Chemistry
7405/2
Time allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105 .

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

\section*{| 0 | 1 |
| :--- | :--- |}

An acidified solution of butanone reacts with iodine as shown.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{I}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{I}+\mathrm{HI}$

0	1	1

On the opposite page, draw the displayed formula for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2}$ I

Give the name of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{I}$
[2 marks]

Displayed formula

Name

[Turn over]

0 1 .2			
The rate equation for the reaction is			
rate $=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$			
TABLE 1 shows the initial concentrations used in experiment.			
TABLE 1			
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$	I_{2}	H^{+}
Initial concentration / $\mathrm{mol} \mathrm{dm}^{-3}$	4.35	0.00500	0.825
The initial rate of reaction in this experiment is $1.45 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$			

Initial rate of reaction

An experiment was done to measure the time, t, taken for a solution of iodine to react completely when added to an excess of an acidified solution of butanone.

Suggest an observation used to judge when all the iodine had reacted. [1 mark]

The experiment was repeated at different temperatures.

FIGURE 1, on page 12, shows how $\frac{1}{t}$ varied with temperature for these experiments.
[Turn over]

FIGURE 1

Describe and explain the shape of the graph in FIGURE 1. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad [Turn over]

Deduce the time taken for the reaction at $35^{\circ} \mathrm{C}$ [1 mark]

Time

BLANK PAGE

[Turn over]

| 0 | 1 |
| :--- | :--- | :--- |

For a different reaction, TABLE 2 shows the value of the rate
constant at different temperatures.
TABLE 2

EXPERIMENT	TEMPERATURE $/ \mathrm{K}$	RATE CONSTANT $/ \mathrm{s}^{-1}$
1	$T_{1}=303$	$k_{1}=1.55 \times 10^{-5}$
2	$T_{2}=333$	$k_{2}=1.70 \times 10^{-4}$

This equation can be used to calculate the activation
energy, E_{a}
$\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
Calculate the value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of the activation energy,
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad$ [5 marks]
นீ
[Turn over]

0	1	8

Name and outline the mechanism for the reaction of
butanone with KCN followed by dilute acid. [5 marks]
Name of mechanism

19

| N |
| :--- | :--- |

Outline of mechanism
[Turn over]

20

0	2

Tetrafluoroethene is made from chlorodifluoromethane in this reversible reaction.
$2 \mathrm{CHClF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{g})$
$\Delta H=+128 \mathrm{~kJ} \mathrm{~mol}^{-1}$

A 2.00 mol sample of CHClF_{2} is placed in a container of volume $23.2 \mathrm{dm}^{3}$ and heated.

When equilibrium is reached, the mixture contains 0.270 mol of CHClF_{2}

21

| 0 | 2 |
| :--- | :--- | :--- |

Calculate the amount, in moles, of $\mathrm{C}_{2} \mathrm{~F}_{4}$ and of HCl in the equilibrium mixture. [2 marks]

Amount of $\mathrm{C}_{2} \mathrm{~F}_{4}$
[Turn over]

22
0.2 . 2

Give an expression for K_{c} for this equilibrium. [1 mark]
K_{c}

23

| 0 | 2 |
| :--- | :--- | :--- |

Calculate a value for K_{c}
Give its units. [3 marks]

Units
[Turn over]

24

0	2

State and explain the effect of using a higher temperature on the equilibrium yield of tetrafluoroethene. [3 marks]
Effect on yield

Explanation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

25

BLANK PAGE

[Turn over]

26

\section*{| 0 | 2 |
| :--- | :--- | :--- |}

Chemists provided evidence that was used to support a ban on the use of chlorodifluoromethane as a refrigerant.

Many refrigerators now use pentane as a refrigerant.

State the environmental problem that chlorodifluoromethane can cause.

Give ONE reason why pentane does not cause this problem. [2 marks]

Environmental problem

Reason why pentane does not cause this problem

27

[Turn over]

28

$0 \mid 3$

This question is about 2-methylbut-1-ene.

Name the mechanism for the reaction of 2-methylbut-1-ene with concentrated sulfuric acid.

Outline the mechanism for this reaction to form the major product. [5 marks]
Name of mechanism

Outline of mechanism to form major product

29

[Turn over]

0 3. 2

Draw the structure of the minor product formed in the reaction in Question 03.1

Explain why this is the minor product. [3 marks]

Structure of minor product

Explanation

\qquad
\qquad
\qquad

Draw the skeletal formula of a functional group isomer of 2-methylbut-1-ene.
[1 mark]

[Turn over]

2-methylbut-1-ene can form a polymer.
State the type of polymerisation.
Draw the repeating unit for the polymer formed. [2 marks]
Type of polymerisation

Repeating unit

BLANK PAGE

[Turn over]

$0 \mid 4$

Proteins are polymers made from amino acids.
Part of the structure of a protein is shown.
-Cys-Ser-Asp-Phe-
Each amino acid in the protein is shown using the first three letters of its name.

0	4	1

Identify the type of protein structure shown. [1 mark]

Tick (\checkmark) ONE box.

Primary

Secondary

Tertiary

Draw a structure for the -Cys-Sersection of the protein.
Use the Data Booklet to help you answer this question. [2 marks]

0	4	3

Name the other substance formed when two amino acids react together to form part of a protein chain. [1 mark]
[Turn over]

The general structure of an amino acid is shown.
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}-\mathrm{COOH}$
R
\mathbf{R} represents a group that varies between different amino acids.
\mathbf{R} groups can interact and contribute to protein structure.

0	4	4

Explain why the strength of the interaction between two cysteine \mathbf{R} groups differs from the strength of the interaction between a serine R group and an aspartic acid R group.

Use the Data Booklet to help you answer this question. [4 marks]

37

Deduce the type of interaction that occurs between a lysine R group and an aspartic acid R group. [1 mark]

BLANK PAGE

[Turn over]

This question is about the preparation of hexan-2-ol.
Hexan-2-ol does not mix with water and has a boiling point of $140{ }^{\circ} \mathrm{C}$

Hexan-2-ol can be prepared from hex-1-ene using this method.

A Measure out $11.0 \mathrm{~cm}^{3}$ of hex-1-ene into a boiling tube in an ice bath.

B Carefully add $5 \mathrm{~cm}^{3}$ of concentrated phosphoric acid to the hex-1-ene.

C After 5 minutes add $10 \mathrm{~cm}^{3}$ of distilled water to the mixture and transfer the boiling tube contents to a separating funnel.

D Shake the mixture and allow it to settle.
E Discard the lower (aqueous) layer.

41

F Add a fresh $10 \mathrm{~cm}^{3}$ sample of distilled water and repeat steps D and E.
G Transfer the remaining liquid to a beaker.

H Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.

I Filter the mixture under reduced pressure.
J Distil the filtrate and collect the distillate that boils in the range $130-160{ }^{\circ} \mathrm{C}$
[Turn over]

42

BLANK PAGE

43

0 5. 1

It is important to wear eye protection and a lab coat when completing this experiment.

Suggest, with a reason, ONE other appropriate safety precaution for this experiment. [2 marks]
Precaution

Reason
[Turn over]

0 5. 2

Give a reason for adding the distilled water in steps C and F. [1 mark]

0 5. 3
Give a reason for adding anhydrous magnesium sulfate in step H. [1 mark]

45

\section*{| 0 | 5 | .4 |
| :--- | :--- | :--- |}

Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step 1 . [2 marks]

[Turn over]

\section*{| 0 | 5 | 5 |
| :--- | :--- | :--- |}

Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step J.

Suggest ONE reason why it could be difficult to remove this impurity. [2 marks] Impurity

Reason

0	5

On the opposite page, calculate the mass, in g , of hexan-2-ol formed from $11.0 \mathrm{~cm}^{3}$ of hex-1-ene if the yield is 31.0\%

Give your answer to 1 decimal place.
Density of hex-1-ene $=0.678 \mathrm{~g} \mathrm{~cm}^{-3}$ [4 marks]

47

Mass

This question is about compound X with the empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

FIGURE 2, on page 50, shows the infrared spectrum of X.

FIGURE 3, on page 51, shows the ${ }^{13} \mathrm{C}$ NMR spectrum of X.

The ${ }^{1} \mathrm{H}$ NMR spectrum of X shows four peaks with different chemical shift values.

TABLE 3, on page 51, gives data for these peaks.

BLANK PAGE

[Turn over]

50
FIGURE 2

FIGURE 3

TABLE 3

Chemical shift $\delta /$ ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

52

BLANK PAGE

53

Show how information from FIGURE 2, FIGURE 3 and TABLE 3, on pages 50 and 51 , can be used to deduce the structure of compound X. [6 marks]
\qquad
[Turn over]
54
\qquad
\qquad
\qquad

55
[Turn over]

56

57
58

59

60

0.7 .2
Name the

59.

4, on page
$\stackrel{\text { w }}{\stackrel{\text { w }}{\sim}}$
shown in

0 7. Deduce the role of the $\mathrm{CH}_{3} \mathrm{O}^{-}$ion in step 3 shown in FIGURE 4, on page 59. [1 mark]

||||||||||||

07.4
A triester in vegetable oil reacts with sodium hydroxide in a
similar way.
Give a use for a product of this reaction. [1 mark]

$\boxed{6}$

62

08

Benzene reacts with methanoyl chloride (HCOCl) in the presence of a catalyst.

0	8

Give an equation for the overall reaction when benzene reacts with methanoyl chloride.

Name the organic product. [2 marks]

Equation
Name

63

0 8. 2

Identify the catalyst needed in this reaction.

Give an equation to show how the catalyst is used to form the electrophile, [HCO] ${ }^{+}$
[2 marks]
Catalyst

Equation

[Turn over]

Outline the mechanism for the reaction of benzene with the electrophile, [HCO$]^{+}$ [3 marks]

65

BLANK PAGE

[Turn over]

66
A sample of olive oil is mainly the unsaturated fat Y mixed
with a small amount of inert impurity.
The structure of Y in the olive oil is shown.
The amount of Y is found by measuring how much bromine
water is decolourised by a sample of oil, using this method.

- Transfer a weighed sample of oil to a $250 \mathrm{~cm}^{3}$ volumetric
flask and make up to the mark with an inert organic
solvent.
- Titrate $25.0 \mathrm{~cm}^{3}$ samples of the olive oil solution with
0.025 mol dm $\mathrm{Br}_{2}(\mathrm{aq})$.
[Turn over]

68

69
mol

Amount of bromine
[Turn over]

0	9

Calculate a suitable mass of olive oil to transfer to the volumetric flask using your answer to Question 09.1 and the structure of Y.

Assume that the olive oil contains 85\% of Y by mass.
(If you were unable to calculate the amount of bromine in the target titre, you should assume it is $6.25 \times 10^{-4} \mathrm{~mol}$. This is NOT the correct amount.) [5 marks]

[Turn over]

The olive oil solution can be prepared using this method.

- Place a weighing bottle on a balance and record the mass, in \mathbf{g}, to 2 decimal places.
- Add olive oil to the weighing bottle until a suitable mass has been added.
- Record the mass of the weighing bottle and olive oil.
- Pour the olive oil into a $250 \mathrm{~cm}^{3}$ volumetric flask.
- Add organic solvent to the volumetric flask until it is made up to the mark.
- Place a stopper in the flask and invert the flask several times.

73

0 9. 3

Suggest an extra step to ensure that the mass of olive oil in the solution is recorded accurately.

Justify your suggestion. [2 marks]
Extra step

Justification
[Turn over]

74

\section*{| 0 | 9 |
| :--- | :--- |}

State the reason for inverting the flask several times. [1 mark]

75

BLANK PAGE

[Turn over]

76

\section*{| 0 | 9 | 5 |
| :--- | :--- | :--- |}

A sample of the olive oil was dissolved in methanol and placed in a mass spectrometer. The sample was ionised using electrospray ionisation. Each molecule gained a hydrogen ion (H^{+}) during ionisation.
The spectrum showed a peak for an ion with $\frac{m}{z}=345$ formed from an impurity in Z the olive oil.
The ion with $\frac{m}{z}=345$ was formed from a compound with the empirical formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$

Deduce the molecular formula of this compound. [2 marks]

Show your working.

Molecular formula

[Turn over]

$1 \mid 0$
This

shown on the

N
$\stackrel{Q}{0}$
$\stackrel{0}{0}$

[Turn over]
80

1 0. Give the name of the mechanism for the reaction in step 3. [1 mark]

\square

83
10.5
Explain why amine B is a stronger base than amine A.
[2 marks]
OF QUESTIONS END

84

| |
| :--- | | Additional page, if required. |
| :--- |
| Write the question numbers in the |
| left-hand margin. |

85

Additional page, if required.
Write the question numbers in the
left-hand margin.

86

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/SB/Jun22/7405/2/E2

