AQA

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
A-level
PHYSICS
Paper 3
Section B Engineering physics
7408/3BC
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 50 minutes on this section.

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 35 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

DO NOT TURN OVER UNTIL TOLD TO
DO SO

on page 7 , shows the variation of the angular
of the rotor with time t during a 12 s period. ~

[Turn over]
6

[Turn over]

8

0.1 .1
Determine the mean angular velocity of the rotor during the
12 s period. [2 marks]

mean angular velocity $=$

> [Turn over]

The moment of inertia of the rotor about its axis of rotation
金金
金 is $2.1 \times 10^{4} \mathbf{~ k g ~ m}{ }^{2}$ ．
A constant frictional torque of 390 N m acts at the bearings
of the rotor．

0	1	2

Calculate the power output of the driving mechanism
during the first 2 s shown in FIGURE 2，on page 7 ．［1 mark］

0	1.3
Calculate the maximum torque applied by the driving	
mechanism to the rotor during the 12 s period.	
[3 marks]	

[^0]| 0.1 . 4 |
| :--- |
| Calculate the magnitude of the angular impulse on the rotor |
| between $t=2.0 \mathrm{~s}$ and $t=7.0 \mathrm{~s}$. [1 mark] |
| angular impulse $=$ |$.$| N m s |
| :--- |

Which graph best shows the variation of the torque T applied to the rotor for the 12 s period?

Tick (\checkmark) ONE box, on pages 15 and 16.
A copy of FIGURE 2 is provided to help you. [1 mark]
copy of FIGURE 2
ω

[Turn over]

16

BLANK PAGE

[Turn over]

02
金 A moving tram is powered by energy stored in a rapidly
FIGURE 3

The total resistive force on the tram due to its motion is
constant at 1.18 kN .
The flywheel is a solid steel disc of diameter 1.00 m . It
has a moment of inertia of $62.5 \mathbf{~ k g ~ m}^{2}$.

22

0 2. 2

Between stops C and D the tram travels downhill.

Suggest TWO advantages of keeping the flywheel connected to the driving wheels when the tram travels downhill. [2 marks]
1
\qquad

2
\qquad
\qquad
\qquad

23

BLANK PAGE

[Turn over]

\section*{| 0 | 2 | 3 |
| :--- | :--- | :--- |}

The same tram is to be used on a track where the stops are further apart, so the flywheel system needs to be modified.

Discuss the design features of the flywheel that will enable it to store more energy without increasing the mass of the tram.

In your answer you should consider:

- the design of the flywheel
- how the choice of materials used to make the flywheel is influenced by its design and maximum angular speed
- other design aspects that allow for high angular speeds of the flywheel.
[6 marks]

25
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

26
\qquad

27
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

28
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $\boxed{11}$

29

0	3	.1

Explain what is meant by an adiabatic change. [1 mark]

[Turn over]

FIGURE 4 shows the p - V diagram for an ideal diesel engine cycle.

FIGURE 4
The diagram is not drawn accurately.
pressure
$l \mathbf{1 0}^{5} \mathrm{~Pa}$
C7
volume

In this cycle, air is compressed adiabatically from a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$ and volume V_{1} to a pressure of $67 \times 10^{5} \mathrm{~Pa}$ and volume V_{2}.

The adiabatic index γ for air $=1.4$
Calculate the compression ratio $\frac{V_{1}}{V_{2}}$.
[2 marks]
compression ratio =
[Turn over]

32

0 3. 3

Explain why the compression ratio for a diesel engine must be greater than the compression ratio for a petrol engine. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

The dashed lines in FIGURE 5, on the opposite page, show the $p-V$ diagram for the ideal diesel engine cycle.

Draw, on FIGURE 5, a typical indicator diagram for a real four-stroke diesel engine with the same values of V_{1} and V_{2}. [2 marks]

FIGURE 5
p

| 0 | 3 |
| :--- | :--- | :--- |

Mark with an X on your diagram the point where the injection of fuel starts.
[1 mark]
[Turn over]

36

03.6

Explain TWO differences between the ideal cycle and the indicator diagram for the real engine. [2 marks]
1
\qquad
\qquad
\qquad

2
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

$0 \mid 4$

FIGURE 6 shows a low-voltage solid-state thermoelectric cooling element.

The element is a square of side 40 mm and is $\mathbf{4} \mathbf{~ m m}$ thick.

FIGURE 6

FIGURE 7, on page 39, shows how the element is used as part of a thermoelectric refrigerator to keep small quantities of medicine at a low temperature.

39

FIGURE 7
The diagram is not drawn accurately.

[Turn over]

The manufacturer's data for the element show that when the temperature of the hot side is $35^{\circ} \mathrm{C}$ and the temperature of the cold side is $5^{\circ} \mathrm{C}$:

- the rate at which energy is dissipated from the hot side is 65 W
- the electrical power supplied is 28 W .
\square
It is claimed that the coefficient of performance (COP) of a thermoelectric refrigerator is much less than the COP of an ideal refrigerator.

Discuss whether the claim is valid for the thermoelectric refrigerator in this question. [4 marks]

41

[Turn over]

42

\section*{| 0 | 4 | 2 |
| :--- | :--- | :--- |}

Suggest why a small value of the COP might be acceptable for this particular application of a thermoelectric cooling element. [2 marks]
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

43

	Additional page, if required. Write the question numbers in the left-hand margin.

44

	Additional page, if required. Write the question numbers in the left-hand margin.

45

	Additional page, if required. Write the question numbers in the left-hand margin.

46

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/NC/Jun22/7408/3BC/E3

[^0]: [Turn over]

