AQA

Level 2 Certificate FURTHER MATHEMATICS

Formulae Sheet

Insert

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

Area of a trapezium $=\frac{1}{2}(a+b) h$
Volume of a prism $=$ area of cross section \times length
Where r is the radius and d is the diameter:

$$
\text { Circumference of a circle }=2 \pi r=\pi d
$$

$$
\text { Area of a circle }=\pi r^{2}
$$

Pythagoras' Theorem and Trigonometry

Quadratic formula

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle $A B C$ where a, b and c are the
 length of the sides:

$$
\text { sine rule: } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$
For any angle $\theta \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$
and

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Coordinate Geometry

Equation of a straight line passing through $\left(x_{1}, y_{1}\right)$ with gradient m

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

The general equation of a circle, centre (a, b), radius r

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

