Surname \qquad
Other Names \qquad
Centre Number
Candidate Number \qquad
Candidate Signature
I declare this is my own work.

Level 2 Certificate
 FURTHER MATHEMATICS

Paper 1 Non-Calculator 8365/1

Time allowed: 1 hour 45 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- mathematical instruments
- the Formulae Sheet (enclosed).

You must NOT use a calculator.

INSTRUCTIONS

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more graph paper and tracing paper. These must be tagged securely to this answer book.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.
$1(x+1)$ is increased by 20%
Its value is now the same as $(x+6)$
Work out the value of \boldsymbol{x}. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

2 The point (-6, -4) lies on a straight line with gradient $\frac{3}{2}$

Work out the coordinates of the point where the line crosses the y-axis. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (\qquad ,

[Turn over]

$$
\text { 3(a) } \quad \begin{aligned}
\mathrm{f}(x) & =4-x & & 0 \leqslant x<1 \\
& =4 x-x^{2} & & 1 \leqslant x<4 \\
& =2 x-8 & & 4 \leqslant x \leqslant 6
\end{aligned}
$$

On the grid, draw the graph of $y=\mathrm{f}(x)$ [4 marks]

3 (b) $g(x)=6-3 x$

$$
\text { Work out } g^{-1}(x) .[2 \text { marks }]
$$

Answer
[Turn over]

4(a) Circle the value of $\tan ^{2} 30^{\circ}$ [1 mark]
$\frac{1}{4}$
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{3}{4}$

4(b) On the axes, sketch $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ} \quad$ [2 marks]

5
$(3 x+a)(5 x-4) \equiv 15 x^{2}-2 x+b$
Work out the values of a and b. [3 marks]
\qquad
\qquad
\qquad
\qquad
$a=$
$b=$
[Turn over]
$6 y=2 x^{4}\left(x^{3}+2-\frac{3}{x}\right)$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ [3 marks]
$\frac{\mathrm{d} y}{\mathrm{~d} x}=$

BLANK PAGE

[Turn over]

$7 \quad A B C$ is a right-angled triangle with vertices

$$
A(-1,5), B(-2,5) \text { and } C\left(-1,5 \frac{3}{4}\right)
$$

Work out the length of BC. [3 marks]

Answer

 units
[Turn over]

8 Use MATRIX MULTIPLICATION to show that, in the $x-y$ plane,

- a rotation, 90° anticlockwise about the origin, followed by
- a reflection in the line $y=x$
is equivalent to a reflection in the x-axis.
[3 marks]
[Turn over]

$9(\mathrm{a}) \quad$ A quadratic sequence starts $\begin{array}{lllll}-2 & -1 & 4 & 13\end{array}$ Work out an expression for the \boldsymbol{n} th term. [3 marks]
\qquad

Answer \qquad

9(b) A different quadratic sequence has nth term $n^{2}+10 n$

Use an algebraic method to work out how many terms in the sequence are less than 2000

Do NOT use trial and improvement.
You MUST show your working. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
[Turn over]

10 Rationalise and simplify fully $\frac{\sqrt{3}}{3+\sqrt{3}} \quad$ [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

11 Expand and simplify fully $(3+2 x)^{5} \quad$ [4 marks]
\qquad

Answer
[Turn over]

12 The nth term of a sequence is $\frac{3 n^{2}}{n^{2}+2}$
12(a) One term in the sequence is $\frac{32}{11}$
Work out the value of \boldsymbol{n}. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

12 (b) Write down the limiting value of the sequence as $n \rightarrow \infty \quad$ [1 mark]

Answer

[Turn over]
$||||||||||||||||||||||\mid$

22

13 Simplify fully $\left(6 x^{3} y^{-2}+9 x^{5} y\right) \div 3 x^{2} y^{-3}$ [3 marks]
\qquad

Answer

14 Rearrange $e f=\frac{5 e+4}{3}$ to make e the subject. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
[Turn over]

$15 \quad B, C$ and D are points on a circle, centre P. $A B$ and $A C$ are tangents to the circle.

The diagram is not drawn accurately.

Prove that $y=90+\frac{x}{2} \quad$ [5 marks]
\qquad
||
[Turn over]

16 Solve the simultaneous equations
$x-y=\frac{19}{4}$
$x y=-3$
Do NOT use trial and improvement.
You MUST show your working. [6 marks]
\qquad

Answer

[Turn over]

17 The point P lies on the circle $x^{2}+y^{2}=16$
The line $O P$ is at an angle of 60° to the positive x-axis.

The diagram is not drawn accurately.

17 (a) Show that the coordinates of point P are (2, 2 $\sqrt{3}$) [2 marks]
\qquad
\qquad
\qquad
[Turn over]

17 (b) Work out the equation of the tangent to the circle at P.

Write your answer in the form $x+a y=b$ where a and b are constants. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
[Turn over]

18 In triangle RST RS: ST=1:4

The diagram is not drawn accurately.

Work out the exact value of $\sin \theta$. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

19 Write $6 x^{2}-24 x+17$ in the form $a(x+b)^{2}+c$ where a, b and c are integers. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

[Turn over]

20 The curve $y=x^{4}-18 x^{2}$ has three stationary points.

Work out the coordinates of the three stationary points and determine their nature.

You MUST show your working. [6 marks]
\qquad

Stationary point (,

Nature
Stationary point (, \qquad
Nature
Stationary point (
,

Nature

$$
\text { Show that } \frac{4 \cos ^{2} x+3 \sin ^{2} x-4}{\cos ^{2} x} \equiv-\tan ^{2} x
$$

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS
\square

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Pages	Mark
$4-7$	
$8-10$	
$12-15$	
$16-19$	
$20-23$	
$24-27$	
$28-31$	
$32-35$	
$36-39$	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/SB/Jun22/8365/1/E2

