Surname \qquad
Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: TRILOGY

\square
Foundation Tier
Physics Paper 2F

8464/P/2F

Time allowed: 1 hour 15 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

011

There are different types of electromagnetic waves.
011.1

What do all electromagnetic waves transfer? [1 mark]

Tick (\checkmark) ONE box.

Charge

Energy

Matter

Sound
011.2

Complete the sentence.
Choose answers from the list. [2 marks]

- charge
- frequency
- speed
- wavelength

Different types of electromagnetic waves have a different \qquad and a different
[Turn over]
011.3

FIGURE 1 shows the electromagnetic spectrum.

FIGURE 1

Radio waves	Microwaves	Infrared	A	Ultraviolet	X-rays	B

Give the names of parts A and B of the electromagnetic spectrum. [2 marks]

A \qquad
B \qquad
011.4

Different types of electromagnetic waves have different uses.

Draw ONE line from each type of electromagnetic wave to its use. [3 marks]

Type of
electromagnetic Use
wave

Electrical heaters

Microwaves

Energy efficient lamps

Ultraviolet
Imaging bones

X-rays

Satellite
communications

[Turn over]

\section*{| 0 | 2 |
| :--- | :--- |}

A student investigated how the colour of a surface affects the power of the infrared radiation emitted by the surface.

FIGURE 2, on the opposite page, shows the equipment used.

The infrared detector measures the power of the infrared radiation emitted by the flasks.

\section*{| 0 | 2 | 1 |
| :--- | :--- | :--- |}

The student poured hot water into each flask.
What should the student do to reduce the risk of burning herself with the hot water? [1 mark]

FIGURE 2

Thermometers

[Turn over]

Describe how the student should use the equipment in FIGURE 2, on page 9, to compare the power of the infrared radiation emitted by each surface. [4 marks]
\qquad

[Turn over]

A student investigated how the power of the infrared radiation emitted from a flask changed with time.

TABLE 1 shows the results.
TABLE 1

Time in seconds	Power in watts
0	8.0
60	7.2
120	6.5
180	5.9
240	5.4
300	5.0
360	4.7
420	4.5

0	2

Describe the pattern shown by the data in TABLE 1. [2 marks]

0.2 .4

What is the most likely value for the power of the infrared radiation emitted after 480 seconds?

Use TABLE 1. [1 mark]

Tick (\checkmark) ONE box.

4.0 W

4.2 W

4.4 W

4.6 W
[Turn over]

A Leslie Cube is used to demonstrate that different surfaces emit different amounts of infrared radiation.

FIGURE 3 shows an infrared detector and a Leslie Cube filled with hot water.

FIGURE 3

\section*{| 0 | 2 |
| :--- | :--- |}

Give ONE advantage of using a Leslie Cube rather than the equipment in FIGURE 2 on page 9. [1 mark]

The teacher improved the demonstration by using four infrared detectors connected to a data logger and computer. Each detector was pointed at a different surface of the Leslie Cube.

The distance between the surface and the detector was the same in each case.

Give TWO reasons why this improved the demonstration. [2 marks]

1 \qquad
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
[Turn over]

$0 \mid 3$

FIGURE 4 shows an apple hanging from a tree.
The X marks the centre of mass of the apple.

FIGURE 4

0]3. 1
Draw an arrow on FIGURE 4 to represent the weight of the apple. [1 mark]

0]3. 2

The apple has a mass of 0.150 kg
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the apple.
Use the equation:
weight $=$ mass \times gravitational field strength
[2 marks]
\qquad
\qquad
\qquad
\qquad

Weight =
[Turn over]

0	3

The apple in FIGURE 4, on page 16, is stationary. Why is the apple stationary? [1 mark]

Tick (\checkmark) ONE box.
\square The resultant force on the apple is downwards.

The resultant force on the apple is upwards.

The resultant force on the apple is zero.

When the apple is ripe it falls from the tree and accelerates towards the ground.

\section*{| 0 | 3 |
| :--- | :--- |}

Why does the apple accelerate? [1 mark]
Tick (\checkmark) ONE box.

The resultant force on the apple is downwards.

The resultant force on the apple is upwards.

The resultant force on the apple is zero.
[Turn over]

The acceleration of the apple is $9.8 \mathrm{~m} / \mathrm{s}^{2}$
The velocity of the apple changes from 0 to $4.9 \mathrm{~m} / \mathrm{s}$

Calculate the time taken for the apple to fall to the ground.

Use the equation:
time taken $=\frac{\text { change in velocity }}{\text { acceleration }}$
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Time taken $=$ \qquad s

BLANK PAGE

[Turn over]
$|||||||||||||||||||||||||\mid$

$0 \mid 4$

FIGURE 5 shows a compass.

FIGURE 5

0.4 . 1

Why does the compass always point in the same direction when it is NOT near a magnet? [1 mark]

Tick (\downarrow) ONE box.

The compass is not magnetic.

The Earth has a magnetic field.

There is no force acting on the compass.

0.4 .2

What material could the needle of the compass be made from? [1 mark]

Tick (\checkmark) ONE box.

Aluminium

Copper

Plastic

Steel

[Turn over]

24

FIGURE 6 shows a coil of wire.

There is a current in the coil.

The circles show the position of four compasses.

FIGURE 6

0.4 . 3

Which statement describes the magnetic field around the coil? [1 mark]

Tick (\checkmark) ONE box.
\square The field has the same strength at all points.The field is stronger further away from the coil.

0	4	4

Draw ONE arrow in EACH circle on FIGURE 6, on the opposite page, to show the direction of the magnetic field at that point. [2 marks]
[Turn over]

0.4 . 5

Give TWO ways the magnetic field around the coil could be made stronger. [2 marks]

1 \qquad
\qquad
\qquad
2
\qquad

$0 \mid 5$

The stopping distance of a car is the sum of the thinking distance and the braking distance.

\section*{| 0 | 5 |
| :--- | :--- |}

Which factors affect the thinking distance? [2 marks]

Tick (\checkmark) TWO boxes.

Condition of the tyres

Driving on wet roads

Mass of the car

Tiredness of the driver

Using a mobile phone
[Turn over]

28

0.5. 2

Explain why a person should NOT drink alcohol and then drive. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

The Highway Code gives information on how thinking distance depends on the speed of a car.

FIGURE 7 shows the information as a graph.

FIGURE 7
Thinking distance in metres

\section*{| 0 | 5 |
| :--- | :--- |}

What is the speed of a car if the thinking distance is 16 m ? [1 mark]

Speed of car $=$ \qquad m / s

0	5

Describe the relationship between speed and thinking distance. [2 marks]

\section*{| 0 | 5 | 5 |
| :--- | :--- | :--- |}

The Highway Code assumes the driver's reaction time is 0.70 seconds.

Draw a line on FIGURE 7, on the opposite page, to show the relationship for a driver with a reaction time of 1.4 seconds. [2 marks]
[Turn over]

0	5.

A car accelerates at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 45 m initial velocity of the car $=0 \mathrm{~m} / \mathrm{s}$

Calculate the final velocity of the car.
Use the Physics Equations Sheet.
Give your answer to 2 significant figures. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Final velocity ($\mathbf{2}$ significant figures) $=$
m / s

[Turn over]

0	6

FIGURE 8 shows a longitudinal wave.

FIGURE 8

\section*{| 0 | 6.1 |
| :--- | :--- |}

What do the labels A and B on FIGURE 8 represent?
Choose answers from the list. [2 marks]

- amplitude
- frequency
- rarefaction
- reflection
- wavelength

A \qquad
B \qquad

The wave shown in FIGURE 8 has a frequency of 4.0 kHz Calculate the period of the wave.

Use the Physics Equations Sheet.
Give the unit. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Period $=$ \qquad Unit
[Turn over]

Sound waves are longitudinal.
FIGURE 9 shows how the speed of sound varies with the temperature of the air.

FIGURE 9

Speed in metres per second

Temperature in ${ }^{\circ} \mathrm{C}$

Use the Physics Equations Sheet to answer questions 06.3 and 06.4.

Write down the equation that links frequency (f), wavelength (λ) and wave speed (v). [1 mark]

\section*{| 0 | 6. | 4 |
| :--- | :--- | :--- |}

A sound wave with a frequency of 300 Hz travels through the air.

The air has a temperature of $28.0^{\circ} \mathrm{C}$

Determine the wavelength of the sound wave.
Use FIGURE 9 on the opposite page. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

Wavelength =

 m
BLANK PAGE

[Turn over]

| $0 \mid 7$ |
| :--- | :--- |

FIGURE 10 shows competitors in the wheelchair race at the London Marathon.

The distance of the London Marathon is $\mathbf{4 2 0 0 0} \mathbf{~ m}$

FIGURE 10

Use the Physics Equations Sheet to answer questions 07.1 and 07.2.

0.7 .1

Write down the equation that links distance (s), force (F) and work done (W). [1 mark]

\section*{| 0 | 7 |
| :--- | :--- |}

During the race competitors work against air resistance.
The work done against air resistance by the winner of the race was 3360000 J

Calculate the average air resistance acting on the winner of the race. [3 marks]

Average air resistance = \qquad N
[Turn over]

Use the Physics Equations Sheet to answer questions 07.3 and 07.4.

\section*{| 0 | 7 | 3 |
| :--- | :--- | :--- |}

Which equation links distance travelled, speed and time? [1 mark]

Tick (\checkmark) ONE box.

distance travelled $=$ speed \times time

time $=$ distance travelled \times speed

speed $=$ distance travelled \times time

\section*{| 0 | 7. |
| :--- | :--- |}

The distance of the London Marathon is $\mathbf{4 2 0 0 0} \mathbf{~ m}$
The winning time for the race was 5600 seconds.
Calculate the average speed of the winner of the race. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Average speed = \qquad m/s
[Turn over]

0.7 .5

Explain why the speed of a competitor changes during the race. [4 marks]
\qquad
\qquad

END OF QUESTIONS

$|$| Additional page, if required. |
| :--- |
| Write the question numbers in the left-hand margin. |

\qquad
\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/CH/Jun22/8464/P/2F/E4

