AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 1 Life and Environmental Sciences

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 |
| :--- | :--- |\quad There are many different types of cell in the human body.

Each type of body cell is specialised for a different function.

0	1	1

Type of cell

Function

To produce hormones

To transport oxygen

Question 1 continues on the next page

Figure 1 shows a doctor testing a reflex action of a patient.

Figure 1

When the doctor touches the patient's foot with a blunt rod, the patient's toes curl.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$ Where are the receptors in this reflex action?

Tick (\checkmark) one box.

In the brain

In the foot

In the leg

$\mathbf{0}$	$\mathbf{1}$.
$\mathbf{3}$	What is the coordinator in this reflex action?	

Tick (\checkmark) one box.

The blunt rod

The central nervous system \square

The sensory neurone

0	1	4
4		

Tick (\checkmark) one box.

Feeling the blunt rod

The blunt rod touching the skin

The toes curling \square

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Muscle cells use oxygen for respiration. |
| :--- | :--- | :--- | :--- |

Explain why muscle cells need to respire.
\qquad
\qquad
\qquad
\qquad

| 0 | 2 |
| :--- | :--- |\quad Fatty material can build up in coronary arteries.

The flow of blood through coronary arteries may be reduced.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Which organ contains coronary arteries?

\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ There are different treatments for coronary diseases. |
| :--- | :--- | :--- | :--- |

Draw one line from each treatment to how the treatment works.

Treatment

How the treatment works

Keeps coronary arteries open

Makes sure blood flows in one direction

Reduces blood cholesterol concentration

Reduces blood glucose concentration
$\begin{array}{llll}0 & 2 & 3 & \text { Some medical drugs can be produced using genetically modified (GM) bacteria. }\end{array}$
How are GM bacteria produced?
[1 mark]
Tick (\checkmark) one box.

All genes are removed from the bacteria.

Bacteria are grown in a solution of the drug.

Genes are transferred into the bacteria.

$\mathbf{0}$	$\mathbf{2} .4$	$\mathbf{4}$ What is one benefit of producing drugs using GM bacteria?

Tick (\checkmark) one box.

Large quantities of the drug can be produced.

Non-GM bacteria live longer than GM bacteria.

The GM bacteria that produce the drug are very infectious.

Scientists are investigating the production of organs from GM animals for transplanting into humans.

| $\mathbf{0}$ | $\mathbf{2} .5$ What is an advantage of using organs from GM animals compared with using organs |
| :--- | :--- | :--- | from human donors?

[1 mark]
Tick (\checkmark) one box.

Organs from GM animals are less likely to be rejected by the human immune system. \square

Organs from GM animals are not likely to function correctly.

There are more human donors than the number of people who need a transplant. \square

\qquad
\qquad

0	$\mathbf{3}$	A student investigated the mass, volume and density of some solid metal cubes.

Figure 2 shows one of the cubes. The length of one side is shown.

Figure 2

0	3	1
. Name a piece of equipment the student could use to measure the length of one side		

\qquad
$\begin{array}{lllll}0 & 3 & \text { • } 2 \text { What is the volume of the cube in Figure 2? }\end{array}$
Tick (\checkmark) one box.

$9.0 \mathrm{~cm}^{3}$ \square
$27.0 \mathrm{~cm}^{3}$ \square
$54.0 \mathrm{~cm}^{3}$ \square

| 0 | 3 |
| :--- | :--- |, 3 A different cube has a mass of 13 g .

The volume of this cube is $8.0 \mathrm{~cm}^{3}$.

Calculate the density of the cube.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
Density $(2$ significant figures $)=$ $\mathrm{g} / \mathrm{cm}^{3}$

The student also investigated the density of a key.
Figure 3 shows the key.
Figure 3

| 0 | 3 | 4 | Which piece of equipment could be used to measure the mass of the key? |
| :--- | :--- | :--- | :--- | Tick (\checkmark) one box.

Balance

Stopwatch \square

Thermometer \square

0	3	5

Figure 4

Describe how the equipment in Figure 4 could be used to measure the volume of the key.
[2 marks]
\qquad
\qquad
\qquad
\qquad

0	$4 \quad$ Classification of living organisms has changed over time.

| 0 | $\mathbf{4}$ | $\mathbf{1}$ Complete the sentences about classification. |
| :--- | :--- | :--- | :--- |

Choose answers from the box.

age	appearance	DNA	mass

Traditional classification placed organisms in groups based
on \qquad .

Modern classification places organisms in groups based on \qquad .

Cabbage and cauliflower plants are both the same species, Brassica oleracea.
$\begin{array}{llll}0 & 4 & 2 & \text { What is the genus name of cabbage and cauliflower? }\end{array}$
Tick (\checkmark) one box.

Brassica

Brassica oleracea \square

Oleracea \square

Question 4 continues on the next page

Figure 5 shows the evolution of some plants.

Figure 5

0	4	.	3
$C a b b a g e ~ a n d ~ c a u l i f l o w e r ~ e v o l v e d ~ i n t o ~ a ~ n e w ~ s p e c i e s ~$			
9			

Rapeseed and turnip evolved more recently.

How many million years ago did rapeseed and turnip evolve into two species?
\qquad million years ago

0	4	.	4	Rapeseed is grown to produce rapeseed oil for cooking.

Complete the sentence.
Choose the answer from the box.

carbohydrate	lipid	protein

Rapeseed oil is a type of \qquad .

| 0 | 4 | 5 | Farmers have gradually changed Brassica oleracea over thousands of years to |
| :--- | :--- | :--- | :--- | produce different varieties.

Which process produced the different varieties of Brassica oleracea?
Tick (\checkmark) one box.

Active transport

Selective breeding

Transpiration

Scientists investigated the genome of cabbage and the genome of cauliflower.

| 0 | 4 |
| :--- | :--- |, 6 What does genome mean?

Tick (\checkmark) one box.

A mutation in the DNA
\square

All of the DNA in an organism \square

The DNA in one gene \square
A

Question 4 continues on the next page

Cabbage and cauliflower have some of the same genes.
Figure 6 shows the number of genes found:

- only in cabbage
- only in cauliflower
- in cabbage and in cauliflower.

Figure 6

0	$\mathbf{4}$	$\mathbf{7}$	Cabbage contains a total of 30000 genes.

Calculate the percentage of genes in cabbage that are found in both cabbage and cauliflower.

Use the equation:

$$
\text { percentage }=\frac{\text { number of genes found in cabbage and in cauliflower }}{\text { total number of genes in cabbage }} \times 100
$$

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage $=$ \qquad \%

| 0 | $\mathbf{4}$ | .8 How does Figure 6 provide evidence that cabbage and cauliflower are |
| :--- | :--- | :--- | closely related?

[1 mark]
Tick (\checkmark) one box.

Cabbage and cauliflower contain the same number of genes.

More genes are only found in cauliflower than only in cabbage.

Most genes are the same in cabbage and in cauliflower.

04 . 8

| 0 | 5 | Chlamydia, HIV and human papillomavirus (HPV) are sexually transmitted |
| :--- | :--- | :--- | diseases (STDs).

0	5	1

Tick (\checkmark) one box.

Flu

Gonorrhoea

Malaria

Measles

Tick (V)

Question 5 continues on the next page

Students were asked to estimate the percentage risk of a person becoming infected

Figure 7

$\mathbf{0}$	$\mathbf{5} .2$

Plot the students' estimated risk of HIV infection on Figure 7.
[1 mark]

0	$\mathbf{5}$	O Which STD in Figure 7 shows the greatest actual risk?

[1 mark]
\qquad

0	5	4
4		

\qquad
\qquad
\qquad
Difference = \qquad \%

| $\mathbf{0}$ | $\mathbf{5}$ | 5 What conclusion can be made about the estimated risk of infection compared to the |
| :--- | :--- | :--- | actual risk of infection with STDs?

[1 mark]
\qquad
\qquad

Question 5 continues on the next page

$\mathbf{0}$	$\mathbf{5}$	6
6	Name one type of contraception that can control the spread of chlamydia.	

| 0 | 5 | -7 |
| :--- | :--- | :--- | Patients with HPV infections are at increased risk of cancer.

Suggest what effect HPV has on human DNA.
[1 mark]
\qquad
\qquad

0	6	Figure 8 shows a human sperm cell.

Figure 8

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$	Cell part A contains DNA.

Name part A.
\qquad

$\mathbf{0}$	6	$\mathbf{2}$ Describe the structure of DNA.

\qquad
\qquad
\qquad
\qquad

0	6	3	Sperm cells are male gametes.

What are female gametes called?
\qquad

Figure 9 shows the chromosomes in a sperm cell.

Figure 9

0	6	4
4	Describe one difference between the chromosomes in a sperm cell and the	

[1 mark]
\qquad
\qquad

0	6	5
5		

Explain what sex the offspring would be.
Use information from Figure 9 in your answer.
\qquad

Turn over for the next question

0	7	This question is about atomic structure.

0	$\mathbf{7}$	$\mathbf{1}$	An atom contains three types of particles.

Table 1 shows some information about the particles.
Table 1

Name of particle	Charge
Electron	-1
Neutron	
Proton	

Complete Table 1.

0	$\mathbf{7}$	$\mathbf{2}$ Models of the atom have changed over time.

Figure 10 shows an early model of the atom.
Figure 10

What is the name of the model of the atom in Figure $\mathbf{1 0} \boldsymbol{?}$
Tick (\checkmark) one box.

Dalton's model

Nuclear model

Plum pudding model

Alpha particles can be used to investigate the structure of atoms.

0	7	3	Alpha particles have a relative mass of 4.

What is an alpha particle?
Tick (\checkmark) one box.

Two electrons and two neutrons \square

Two neutrons and two protons \square

Two protons and two electrons \square

Question 7 continues on the next page

Alpha particles from a source were directed at thin gold foil.
Figure 11 shows some of the paths the alpha particles followed.

Figure 11

Table 2 shows the number of alpha particles that followed paths \mathbf{A}, \mathbf{B} and \mathbf{C}.
Table 2

Path	Number of alpha particles
A	8289864
B	7920
C	198

| 0 | 7 | 4 | The number of alpha particles on path \mathbf{A} was greater than the number of alpha |
| :--- | :--- | :--- | :--- | particles on path B.

Calculate how many times greater.
[2 marks]
\qquad
\qquad
\qquad
Number of times greater $=$ \qquad
 7920: 198

What is $7920: 198$ written as its simplest ratio?
Tick (\checkmark) one box.
$40: 1$

$500: 1$

8000: 1

| 0 | 7 | 6 |
| :--- | :--- | :--- | Tick (\checkmark) one box.

Alpha particles following path C are bounced back.

Most alpha particles follow path \mathbf{A}.

The alpha particles from the source travel in straight lines. \square

Question 7 continues on the next page

Figure 12 represents four atoms.

Figure 12

W

Z

0	7	7	On the periodic table, helium is shown as:

4
He
helium
2

Which atom in Figure 12 represents an atom of helium?
Tick (\checkmark) one box.
W

X \square
Y

Z

$\mathbf{0}$	$\mathbf{7}$.8	8

Tick (\checkmark) one box.

W and \mathbf{X}

W and Z

\mathbf{X} and \mathbf{Y}

\mathbf{Y} and \mathbf{Z}

| 0 | 7. | 9 |
| :--- | :--- | :--- | An atom has a radius of 0.182 nm .

Calculate the radius of the atom in metres.
$1 \mathrm{~m}=1000000000 \mathrm{~nm}$
\qquad
\qquad
Radius $=$ \qquad m

0	$8 \quad$ The human immune system responds to pathogens entering the body.

| 0 | 8 |
| :--- | :--- |$\quad 1$ Which part of the blood is responsible for an immune response?

Tick (\checkmark) one box.

Platelets

Red blood cells

White blood cells

| 0 | $\mathbf{8}$ |
| :--- | :--- | $\mathbf{| l}$ 2 Some pathogens release toxins in the body.

Name the type of substance produced in the body that destroys the toxins.
[1 mark]
\qquad

What is the name of this process?
[1 mark]

Suggest two symptoms of an allergy to pollen.

1 \qquad
\qquad
2 \qquad
\qquad

Question 8 continues on the next page

| 0 | 8 | 6 |
| :--- | :--- | :--- | An allergy to pollen cannot be treated using antibiotics.

Suggest why.
[1 mark]
\qquad
\qquad

0	8	$\mathbf{7}$	Explain one problem caused by the overuse of antibiotics.

\qquad
\qquad
\qquad
\qquad

0	9	$U l t r a v i o l e t, ~ i n f r a r e d ~ a n d ~ v i s i b l e ~ l i g h t ~ a r e ~ p a r t ~ o f ~ t h e ~ e l e c t r o m a g n e t i c ~ s p e c t r u m . ~$

Give one use of ultraviolet radiation and one use of infrared radiation.

Ultraviolet radiation \qquad
\qquad
Infrared radiation \qquad

Question 9 continues on the next page

0	$\mathbf{9}$	$\mathbf{2}$ Neon atoms can absorb electromagnetic radiation. 10

Figure 13 shows three of the energy levels around the nucleus of a neon atom.

Figure 13

The atom in Figure 13 has absorbed electromagnetic radiation.

What happens as an electron moves from energy level \mathbf{B} to energy level \mathbf{A} ?
[1 mark]
Tick (\checkmark) one box.

Light is absorbed \square

Light is emitted \square

Light is reflected \square

An electromagnetic wave has a speed of $300000000 \mathrm{~m} / \mathrm{s}$.

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{3}$ What is the speed of the wave in standard form?

[1 mark]
Tick (\checkmark) one box.
$3.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$

$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$3.0 \times 10^{9} \mathrm{~m} / \mathrm{s}$

Use the Physics Equations Sheet to answer questions 09.4 and 09.5.

0	9	4
4		

\qquad

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{5}$ The electromagnetic wave has a frequency of 750000 Hz . $. . .0 \mid$

Calculate the wavelength of the electromagnetic wave.
Give the unit.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Wavelength $=$ \qquad Unit \qquad

| 1 | 0 |
| :--- | :--- | mass of pieces of potato.

This is the method used.

1. Cut three pieces of potato, each with a mass of 2.00 g .
2. Place the pieces of potato into a salt solution with a concentration of $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$.
3. After 30 minutes, measure the mass of each piece of potato.
4. Calculate the change in mass.
5. Repeat steps 1 to 4 for five other concentrations of salt solution.

Table 3 shows the results.

Table 3

Concentration of salt solution in mol/dm 3	Change in mass in g			Mean change in mass in g
0.2	0.31	0.34	0.25	0.30
0.4	-0.07	-0.08	-0.13	-0.09
0.6	-0.18	-0.13	-0.11	-0.14
0.8	-0.24	-0.19	-0.17	-0.20
1.0	-0.22	-0.30	-0.32	-0.28
1.2	-0.26	-0.35	-0.32	\mathbf{X}

Do not refer to mass or time in your answer.

1 \qquad
\qquad
2 \qquad
\qquad

1	0	2
2	Calculate value \mathbf{X} in Table 3.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$X=$ g

Figure 14 shows a potato cell.
Figure 14

 salt solution.

You should refer to the cell parts labelled in Figure 14.
\qquad

1	0	4
4		

Give one piece of evidence to support this.
\qquad
\qquad

1	0	5	The potato cell in Figure 14 contains starch grains.

A starch grain on a different image had a diameter of 1.2 cm .
The starch grain had a real diameter of 0.008 mm .

Calculate the magnification of the image.
\qquad
\qquad
\qquad
\qquad
\qquad
Magnification $=\times$ \qquad

Question 10 continues on the next page

Starch is digested in the gut.

1	$\mathbf{0}$	6
6		

Tick (\checkmark) one box.

Starch is a carbohydrate.

Starch molecules are insoluble. \square

Starch molecules are small. \square

1	$\mathbf{0}$.7	Describe the process of starch digestion.

\qquad
\qquad
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

