AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

COMBINED SCIENCE: SYNERGY

Higher Tier Paper 2 Life and Environmental Sciences

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 | 1 |
| :--- | :--- | :--- | The human circulatory system is made of different structures.

Give the structures in order of size from the largest to the smallest.
Choose answers from the box.
The first one has been completed for you.

heart \quad muscle cell	nucleus

Figure 1 shows a heart.

Figure 1

0	$\mathbf{1}$.	$\mathbf{2}$ The heart pumps blood from the body to the lungs.

Which route does blood travel through the heart?
[1 mark]
Tick (\checkmark) one box.

\square
\square

aorta \rightarrow left atrium \rightarrow left ventricle \rightarrow pulmonary artery
 aorta \rightarrow right atrium \rightarrow right ventricle \rightarrow pulmonary artery
 vena cava \rightarrow left atrium \rightarrow left ventricle \rightarrow pulmonary artery
 vena cava \rightarrow right atrium \rightarrow right ventricle \rightarrow pulmonary artery

\square

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$ Explain why the wall of the left ventricle is thicker than the wall of the right ventricle.

\qquad
\qquad
\qquad
\qquad

| 0 | 1 | 4 |
| :--- | :--- | :--- | What is the function of structure \mathbf{X} shown in Figure 1?

\qquad
\qquad

Question 1 continues on the next page

Which part of the heart contains the pacemaker?

Tick (\checkmark) one box.

Left atrium

Left ventricle

Right atrium

Right ventricle \square

| 0 | 1 |
| :--- | :--- |$. \begin{array}{ll}6 & \text { What is the function of the pacemaker? }\end{array}$

\qquad
\qquad

| 0 | 1 | .7 |
| :--- | :--- | :--- | A person started an exercise training programme to improve their health.

Table 1 shows information about the person's heart.

- Stroke volume is the volume of blood pumped out of the heart each beat.
- Cardiac output is the total volume of blood pumped out of the heart each minute.

Table 1

Stage of training programme	Heart rate in beats per minute	Stroke volume in $\mathbf{c m}^{\mathbf{3}}$	Cardiac output in $\mathbf{c m}^{\mathbf{3}}$ per minute
Before	71	65	4615
After	57	81	4617

After the training programme the person's heart rate had decreased.

Explain the effect the training programme had on the person's cardiac output.
Use Table 1.
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | .8 | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | non-communicable diseases.

\qquad

$\mathbf{0}$	$\mathbf{2}$ Some plants have leaves with white areas and green areas..$~$

A student tested a leaf with white areas and green areas for starch.

This is the method used.

1. Boil the leaf in ethanol.
2. Rinse the leaf in water.
3. Add iodine solution to the leaf.
4. Record the colour of each area of the leaf.

Figure 2 shows the results.

Figure 2

0	2	1

Why does the green colour need to be removed from the leaf before the leaf is tested for starch?
[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ Explain how the results in Figure 2 provide evidence that the white area of the leaf |
| :--- | :--- | :--- | did not contain chlorophyll.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page
\qquad

The student investigated the coloured pigments in the leaf.
Figure 3 shows the apparatus.

Figure 3

0	2	3	Chromatography involves a mobile phase and a stationary phase.

Draw one line from each phase to the identity of that phase in the investigation.

Phase

Mobile phase
Identity of phase

hromatography paper

Mixture of leaf pigments

Solvent

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{4}$ The student drew the start line in pencil.

Why did the student not draw the start line in ink?
[1 mark]

Question 2 continues on the next page

Table 2 shows the results.
Table 2

Colour of leaf pigment	Distance moved by leaf pigment in $\mathbf{~ m m}$	$\mathbf{R}_{\mathbf{f}}$ value
Orange	116	0.96
Brown	42	0.35
Green	33	0.27
Yellow	\mathbf{X}	0.24

| 0 | 2 |
| :--- | :--- | :--- | $\mathbf{5}$ Calculate \mathbf{X} in Table 2.

Use the equation:

$$
R_{f} \text { value }=\frac{\text { distance moved by leaf pigment }}{\text { distance moved by solvent }}
$$

The distance moved by the solvent was 121 mm .

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathbf{X}(2$ significant figures $)=$ \qquad mm

Table 3 shows the range of R_{f} values for known leaf pigments.

Table 3

Leaf pigment	Range of $\mathbf{R}_{\mathbf{f}}$ values
Carotene	0.89 to 0.98
Chlorophyll a	0.20 to 0.30
Phaeophytin	0.33 to 0.40
Xanthophyll	0.04 to 0.28

$\mathbf{0}$	$\mathbf{2}$.	6
	The student used Table 3 to identify the leaf pigments in their investigation.	

Which colour is the leaf pigment phaeophytin?
Use Table 2 and Table 3.
\qquad

$\mathbf{0}$	$\mathbf{2}$,	$\mathbf{7}$ Another student did the investigation using the same leaf pigments.

The R_{f} values for the same pigments were different.

What is the reason for the difference?
Tick (\checkmark) one box.

A different solvent was used.

A greater volume of solvent was used.

The solvent moved further.

| 0 | 3 |
| :--- | :--- |\quad Waves transfer energy.

What is created in the radio receiver when the radio waves are absorbed?
Tick (\checkmark) one box.

An alpha particle

An alternating current

An ultraviolet wave

An X-ray

| $\mathbf{0}$ | $\mathbf{3} .2$ | 2 |
| :--- | :--- | :--- | another substance.

Which diagram shows the refraction of a radio wave?
Tick (\checkmark) one box.

\square

Question 3 continues on the next page

When the radio receiver is switched on, a sound wave is produced.

1 \qquad
\qquad

2 \qquad
\qquad

| 0 | $\mathbf{3} .4$ | Table 4 shows the speed of sound in different substances at two |
| :--- | :--- | :--- | different temperatures.

Table 4

Substance	Temperature of substance in ${ }^{\circ} \mathrm{C}$	Speed of sound in metres per second
Air	1	332
Air	20	344
Steel	1	5002
Steel	20	5136
Water	1	1411
Water	20	1465

Give three conclusions about the effect of temperature and the type of substance on the speed of sound waves.
[3 marks]

1 \qquad
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3} .5$ | A teacher used a ripple tank to show how varying the frequency affected the |
| :--- | :--- | :--- | wavelength of water waves.

Figure 4 shows the apparatus.

Figure 4

To power supply

This is the method used.

1. Turn on the lamp.
2. Adjust the power supply so that the wooden bar vibrates with a frequency of 10 Hz to produce waves on the water.
3. Take a photograph of the image of the waves projected onto the white card.
4. Measure the length of 5 waves from the photograph.
5. Calculate the wavelength of 1 wave.
6. Repeat steps 2 to 5 for different frequencies.

The method used by the teacher is better than measuring the length of only 1 wave directly from the white card.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	4	A tumour is a group of abnormal cells that form a lump.

0	4	1	$G i v e$

\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{2}$ Tumours can be benign or malignant..$~$

Malignant tumours are cancers.

Give two ways a malignant tumour is different from a benign tumour.

1
\qquad
2 \qquad
\qquad

Question 4 continues on the next page

Scientists tested a new drug to treat tumours in mice.
All the mice:

- had the same type of tumour
- were the same age
- were female.

This is the method used.

1. Inject the mice with a dose of 0.015 mg of the drug every day for 20 days.
2. Measure the volume of the tumour every 4 days.
3. Repeat steps 1 and 2 with new groups of mice using doses of:

- 0.030 mg of the drug
- 0.060 mg of the drug.
$\begin{array}{lllll}0 & 4 & 3 & \text { Give two control variables the scientists should have used in the drug test. }\end{array}$
Do not refer to the type of tumour, the age of the mice or the sex of the mice.
[2 marks]
1 \qquad
\qquad
2 \qquad
\qquad

0	4	4	Some mice were used as a control group.

Suggest what treatment was given to the control group.
[1 mark]
\qquad
\qquad

0	4	5

\qquad
\qquad

Figure 5 shows the results.
Figure 5

| 0 | $\mathbf{4}$ | 6 |
| :--- | :--- | :--- | between 0 and 20 days.

\qquad
\qquad
\qquad
\qquad
\qquad
Percentage increase $=$ \qquad \%
$\begin{array}{lllll}0 & 4 & \mathbf{7} \text { Give two conclusions about the effectiveness of the different doses of the drug. }\end{array}$
Use Figure 5.
[2 marks]

1
\qquad

2 \qquad
\qquad

Question 4 continues on the next page

| 0 | $\mathbf{4}$ | $\cdot 8$ | Suggest why the scientists measured the volume of the tumour instead of measuring |
| :--- | :--- | :--- | :--- | the width of the tumour.

[1 mark]
\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{9}$	The scientists tested the drug in two stages:

- stage 1: drug tested on pieces of tumour tissue
- stage 2: drug tested on mice with tumours.

What extra information will the scientists gain by testing the drug on mice at stage 2 ?

| $\mathbf{0}$ | $\mathbf{5}$ A student investigated the number of plants in two different fields. |
| :--- | :--- | :--- |

This is the method used.

1. Place a quadrat randomly in field \mathbf{A}.
2. Count the number of plants of each species in the quadrat. Do not count grasses.
3. Repeat steps 1 and 2 another 19 times.
4. Repeat steps 1 to 3 for field B.

Figure 6 shows the two fields.

Figure 6

0	$\mathbf{5}$.1	Why should a random sampling method be used to sample the plants?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ |
| :--- | :--- | $\mathbf{2}$ The student counted dandelion plants.

The student used a $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ quadrat.
The mean number of dandelion plants in field \mathbf{A} in Figure 6 was 2.8 per quadrat.

Determine the total number of dandelion plants in field \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Total number $=$ \qquad

Question 5 continues on the next page

The student placed insect traps in the ground in field \mathbf{A} and in field \mathbf{B}.
The insect traps were used to estimate the total number of insects in each field.

Figure 7 shows the position of the insect traps in each field.

Figure 7

Figure 8 shows the insect trap the student used.

Figure 8

This is the method used.

1. Place the insect traps in the fields as shown in Figure 7 and Figure 8.
2. Leave for 12 hours.
3. Count the number of insects of each species in each trap.
4. Repeat every 2 days for 6 days.

| $\mathbf{0}$ | $\mathbf{5}$ | $\cdot \mathbf{3}$ The method for estimating the total number of insects in field \mathbf{A} and field \mathbf{B} |
| :--- | :--- | :--- | :--- | may not give valid results.

Suggest two reasons why.

1 \qquad
\qquad
2 \qquad
\qquad

| 0 | 5 | 4 |
| :--- | :--- | :--- | Table 5 shows the results for all the plants and insects sampled.

Table 5

	Mean number of plants per quadrat	Number of different species of plant	Total number of insects	Number of different species of insect
Field A	10.7	3	75	3
Field B	10.6	16	130	2

A student concluded:
'There is greater biodiversity in field \mathbf{B} than in field \mathbf{A}.'

Give the reason why.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ There has been a decrease in the total number of birds in the UK since 1970. |
| :--- | :--- | :--- | :--- |

Explain how planting more hedges would affect the number of birds.
\qquad
\qquad
\qquad
\qquad

> | 0 | $\mathbf{6}$ | Some mosquitos can transmit malaria. |
| :--- | :--- | :--- |

| $\mathbf{0}$ | 6 |
| :--- | :--- | $\mathbf{1}$ Describe how a mosquito transmits malaria.

\qquad
\qquad
\qquad
\qquad

Scientists discovered a population of mosquitos living in the tunnels of the London Underground train system.

The mosquito 'C. pipiens' entered the tunnels when the London Underground was being built in the 1800s.

Some mosquitos were trapped in the tunnels.
Table 6 gives information about C. pipiens mosquitos.

Table 6

C. pipiens that live above ground	C. pipiens that live in the tunnels
Feed on the blood of birds during the spring and summer	Feed on the blood of rats throughout the year
Need to feed on blood before laying eggs	Do not need to feed on blood before laying eggs
Are not active in the autumn and winter	Stay active all year round

\qquad
\qquad
 new species.

| 0 | 6 | $\mathbf{5}$ Most female mosquitos feed on the blood of animals before laying their eggs. |
| :--- | :--- | :--- | :--- |

Figure 9 shows the change in the body temperature of a female mosquito while feeding on blood.

Figure 9

Mosquitos control their internal body temperature by homeostasis.
The optimum internal body temperature of mosquitos is $22^{\circ} \mathrm{C}$.

Explain why mosquitos can only feed on blood for a short time.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	7	Matter can exist in different states.

Table 7 shows the melting points and boiling points of four substances.
Table 7

Substance	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Carbon dioxide	-78	-78
Methane	-183	-162
Nitrogen	-210	-196
Water	0	100

$\mathbf{0}$	$\mathbf{7}$:	$\mathbf{1}$

\qquad ${ }^{\circ} \mathrm{C}$

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ Nitrogen gas is transported in cylinders at high pressure. |
| :--- | :--- | :--- | :--- |

Figure 10 shows a cylinder containing nitrogen gas.
Figure 10

What causes the pressure on the inside walls of the gas cylinder?
\qquad
\qquad

0	7.

What happens when carbon dioxide sublimates?
Use Table 7.
[1 mark]
\qquad
\qquad

| 0 | 7 |
| :--- | :--- | .4 Solid carbon dioxide is used during the transport of frozen food.

Using solid carbon dioxide keeps the food cold for longer than using frozen water.

Suggest one other advantage of using solid carbon dioxide instead of using frozen water during the transport of frozen food.
[1 mark]
\qquad
\qquad

0	$\mathbf{7}$	$\mathbf{5}$	The planet Saturn has a moon called Titan.

The surface temperature of Titan is $-179.6^{\circ} \mathrm{C}$.
Features similar to rivers have been seen on Titan.

Which substance in Table 7 could be the liquid in the rivers on Titan?

Question 7 continues on the next page

0	7.	6

Figure 11

Give two limitations of using this model to describe changes of state.

1 \qquad
\qquad
2 \qquad
\qquad

The total energy supplied to the water is 1320000 J .
mass of water $=500 \mathrm{~g}$
specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$

Calculate the specific latent heat of vaporisation of water.
Use the Physics Equations Sheet.
[6 marks]
\qquad
Specific latent heat of vaporisation $=$ \qquad J / kg

0	8

One plant tissue is meristem tissue.
Meristem tissue:

- is made of meristem stem cells
- is found in the growing areas of a plant
- contains the cells that divide as a plant grows.

Figure 12 shows how specialised leaf cells are produced from meristem cells.

Figure 12
Meristem cells $\xrightarrow[\text { Cell division }]{ }$ New cells $\longrightarrow \mathbf{X}$ Specialised leaf cells

Meristem cells divide and then form specialised cells.

Name process \mathbf{X}.
\qquad

| 0 | 8 |
| :--- | :--- | $\mathbf{2}$ Describe two changes that can happen in a plant because meristem cells divide.

[2 marks]
1 \qquad
\qquad
2 \qquad
\qquad

Question 8 continues on the next page

Turn over

Figure 13 shows the plant shoot.

Figure 13

The percentage of cells dividing by mitosis was estimated.
This is the method used.

1. Take a tissue sample from section \mathbf{A} of the plant shoot and view 100 cells.
2. Count how many of the 100 cells are dividing by mitosis.
3. Repeat steps 1 and 2 for sections \mathbf{B}, \mathbf{C} and \mathbf{D} of the plant shoot.

Table 8 shows the results.
Table 8

Section of plant shoot	Percentage (\%) of cells dividing by mitosis
A	13
B	4
C	0
D	0

Explain the results in Table 8.
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

Phloem tissue and xylem tissue are part of a plant's transport system.

0	8	4
4		

Figure 14 shows a section of phloem tissue in a leaf.

Figure 14

0	8	5
5	Describe two ways the structure of phloem cells is different from the structure of	

1 \qquad
\qquad
2 \qquad
\qquad

0	8	6
6	Dissolved sugar moves from the leaf cell into the phloem cell.	

In Figure 14:

- the concentration of sugar in the leaf cell is $4 \mathrm{mg} \mathrm{per} \mathrm{dm}^{3}$
- the concentration of sugar in the phloem cell is 118 mg per dm^{3}.

The companion cell is needed to move sugar from the leaf cell into the phloem cell.
Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
\square	

nformation

This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please

Copyright © 2022 AQA and its licensors. All rights reserved.

