AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical Sciences

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	This question is about reactions of metals.

A student investigated the reactivity of three metals.
Figure 1 shows the order of reactivity of the three metals.

Figure 1

Decreasing reactivity	Magnesium Zinc Copper

The student added each metal to three different metal sulfate solutions.
Table 1 shows some of the results.
Table 1

	Metal sulfate solution		
Metal	Magnesium sulfate	Zinc sulfate	Copper sulfate
Magnesium	x		
Zinc	x	x	\checkmark
Copper			x

Key
\checkmark reaction occurs
\mathbf{x} no reaction

A more reactive metal displaces a less reactive metal from a compound.

0	1	1

Use:

- \checkmark where a reaction occurs
- \boldsymbol{x} where there is no reaction.

Use Figure 1.
[2 marks]

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Zinc reacts with copper sulfate to produce zinc sulfate and copper.

Complete the word equation for the reaction.

$$
2 \text { mains. }
$$

[1 mark]
zinc + \qquad \rightarrow \qquad $+$ \qquad

Question 1 continues on the next page

Potassium is in Group 1 of the periodic table.
A teacher demonstrated the reaction of potassium with water.
Figure 2 shows the apparatus.

Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ What type of solution is formed when potassium reacts with water? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Acidic \square

Alkaline

Neutral

| 0 | 1 | .4 |
| :--- | :--- | :--- | Which gas is produced when potassium reacts with water?

Tick (\checkmark) one box.

Carbon dioxide

Hydrogen

Oxygen

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$	Give one observation seen when potassium is added to water.

[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .6$ |
| :--- | :--- | :--- |

How does the reactivity of sodium compare with the reactivity of potassium?
[1 mark]
Tick (\checkmark) one box.

Sodium is less reactive than potassium. \square
Sodium has the same reactivity as potassium. \square
Sodium is more reactive than potassium. \square

Question 1 continues on the next page

0	1	.7

Figure 3

Sodium atom

Magnesium atom

A sodium atom forms a Na^{+}ion.

Which ion does a magnesium atom form?
[1 mark]
Tick (\checkmark) one box.
$\mathrm{Mg}^{+} \square$

$\mathrm{Mg}^{2+} \square$ $\mathrm{Mg}^{2-} \square$

| $\mathbf{0}$ | $\mathbf{2}$ |
| :--- | :--- | | Figure 4 shows a student launching a toy aeroplane. |
| :--- |
| The student pulls on the aeroplane to stretch the spring and then lets go of
 the aeroplane. |

Figure 4

| $\mathbf{0}$ | $\mathbf{2}$. 1 Give one factor that would affect how high the aeroplane goes. |
| :--- | :--- | :--- |

[1 mark]
\qquad

Calculate the elastic potential energy stored by the spring.
spring constant $=27 \mathrm{~N} / \mathrm{m}$
Use the equation:

$$
\text { elastic potential energy }=0.5 \times \text { spring constant } \times(\text { extension })^{2}
$$

\qquad
\qquad
\qquad
Elastic potential energy = \qquad J
A student investigated how the extension of the spring varied as the force on the

Figure 5

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ What is a correct conclusion about the relationship between force and extension |
| :--- | :--- | :--- | :--- | from 0 to 9 N ?

Tick (\checkmark) one box.

Force and extension are inversely proportional. \square
Force and extension have a linear relationship. \square
Force and extension show a negative correlation. \square

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ The spring in Figure 5 was stretched inelastically. |
| :--- | :--- | :--- | :--- |

What was the extension when the spring was at the limit of proportionality?
Tick (\checkmark) one box.
9 cm

34 cm \square 40 cm \square

Give a reason for your answer.
\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ Figure 6 shows what happened to the extension of the spring as the force |
| :--- | :--- | :--- | :--- | was decreased.

Figure 6

Describe what happened to the spring as the force was decreased from 10 N to 0 N . [2 marks]
\qquad
\qquad
\qquad
\qquad

Key

* Force on spring increasing
-*- Force on spring decreasing

| 0 | 3 |
| :--- | :--- | This question is about ammonium chloride.

Ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ decomposes to produce ammonia $\left(\mathrm{NH}_{3}\right)$ and hydrogen chloride (HCl).

The reaction is reversible.

The equation for the reaction is:

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{1}$ What is the state of hydrogen chloride in this reaction? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

Aqueous

Gas

Liquid

Solid \square

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{2}$ How does the equation show that the reaction is reversible? |
| :--- | :--- | :--- |

\qquad
\qquad

0	3	3

[1 mark]
Tick (\checkmark) one box.
3
4 \square
5 \square
6 \square

0	3	4

Tick (\checkmark) one box.

When the forward reaction is slower than the reverse reaction.

When the forward reaction and the reverse reaction have the same rate.
[1 mark]

When the forward reaction is faster than the reverse reaction.
\square

When the foward reation is faster than the reverse reaction.

\square

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{5}$ How must the apparatus for the reaction be designed so that dynamic equilibrium |
| :--- | :--- | :--- | can be reached?

Tick (\checkmark) one box.

So all of the substances can escape.

So none of the substances can escape. \square

So only ammonia and hydrogen chloride can escape. \square

Question 3 continues on the next page

| 0 | 3 | 6 |
| :--- | :--- | :--- | Figure 7 represents the electronic structure of a chlorine atom (Cl).

Figure 7

Which diagram represents the electronic structure of a chloride ion $\left(\mathrm{Cl}^{-}\right)$?
[1 mark] Tick (\checkmark) one box.

\square

0	3	$\mathbf{7}$ Ammonia has the formula NH_{3},

Calculate the percentage (\%) by mass of nitrogen (N) in NH_{3}
Relative atomic mass $\left(A_{\mathrm{r}}\right): \quad \mathrm{N}=14$
Relative formula mass $\left(M_{\mathrm{r}}\right): \quad \mathrm{NH}_{3}=17$

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage (2 significant figures) $=$ \qquad \%

Question 3 continues on the next page

Figure 8 represents ammonia.
Figure 8

0	3	8	What does '-_' represent in Figure 8?

[1 mark]
\qquad
\qquad

| 0 | 3 | -9 |
| :--- | :--- | :--- | What type of particle is ammonia?

Tick (\checkmark) one box.

Atom

Ion

Molecule

| 0 | 4 |
| :--- | :--- | Two students investigated how the current in filament lamp L varied with the potential difference across the lamp.

Figure 9 shows the circuit used.

Figure 9

0	$\mathbf{4}$	$\mathbf{1}$ What is component \mathbf{P} ?

Tick (\checkmark) one box.

Battery

Cell

Fuse

| 0 | $\mathbf{4}$ |
| :--- | :--- | $\mathbf{2}$ The resistance of the variable resistor is increased.

How does increasing the resistance of the variable resistor affect the reading on the ammeter?

Tick (\checkmark) one box.

The ammeter reading decreases.

The ammeter reading stays the same. \square

The ammeter reading increases.

Question 4 continues on the next page

Figure 10 shows the results.
Figure 10

Figure 11 shows the line of best fit drawn by each student.

Figure 11

0	$\mathbf{4}$	$\mathbf{3}$ Explain why student B's line of best fit is correct.

\qquad
\qquad
\qquad
\qquad

0	4	4	What type of error will have caused the point at 2 V to be above the line of best fit?

[1 mark] Tick (\checkmark) one box.

A random error \square

A systematic error \square

A zero error \square

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4}$ |
| :--- | :--- | $\mathbf{5}$ When the potential difference across the filament lamp is 1.5 V , the current in the lamp is 0.3 A .

Calculate the resistance of the filament lamp.
Use the equation:

$$
\text { resistance }=\frac{\text { potential difference }}{\text { current }}
$$

\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

0	$\mathbf{4}$	$\mathbf{6}$ The students investigated how the length of a wire affects the resistance of the wire.

Figure 12 shows the circuit used.
The temperature of the wire was kept constant.

Figure 12

Identify the variables in the investigation.
Tick (\checkmark) one box in each row.

Variable	Control variable	Dependent variable	Independent variable
Length of the wire			
Resistance of the wire			
Temperature of the wire			

| 0 | 5 |
| :--- | :--- | This question is about solutions.

$\mathbf{0}$	$\mathbf{5}$	A	$\mathbf{1}$	$.4 \mathrm{dm}^{3}$ of a solution contains 24 g of solute.

Calculate the concentration of the solution.
Use the equation:

$$
\text { concentration }=\frac{\text { mass of solute }}{\text { volume of solution }}
$$

\qquad
\qquad
\qquad
Concentration $=$ $\mathrm{g} / \mathrm{dm}^{3}$

| 0 | 5 | 2 |
| :--- | :--- | :--- | What is meant by a 'solute'?

[1 mark]
\qquad
\qquad

A student investigated which solution had the higher concentration.
The student evaporated sugar solution at a temperature of $40^{\circ} \mathrm{C}$ until only sugar remained.

Figure 13 shows the equipment used.
Figure 13

Plan a method to show if sugar solution \mathbf{X} or sugar solution \mathbf{Y} has the higher concentration.
\qquad
Question 5 continues on the next page

0	5	.4	Figure 14 shows the balance.

Figure 14

The resolution is the smallest change in the quantity being measured that a measuring instrument can show.

What is the resolution of the balance?
Tick (\checkmark) one box.
0.01 g \square
0.10 g

1.00 g \square

0	6

Figure 15

The National Grid transfers electrical power efficiently from power stations to houses.

| $\mathbf{0}$ | 6 | .1 |
| :--- | :--- | :--- | The step-down transformer supplies mains electricity to the houses.

Complete the sentence.
Choose the answer from the box.
[1 mark]

charge	current	potential difference	resistance

The step-down transformer decreases the \qquad .

Figure 16 shows an electric kettle plugged into a socket in a house.
Figure 16

| 0 | 6 | 2 |
| :--- | :--- | :--- | The cable connecting the kettle to the socket is a three-core cable.

The insulation on each wire is a different colour.

Draw one line from each wire to the colour of insulation.

Use the Physics Equations Sheet to answer questions 06.3 and 06.4 .

0	6	3	

[1 mark]
Tick (\checkmark) one box.
$E=\frac{Q}{V} \quad \square$
$E=\frac{Q}{V^{2}} \quad \square$
$E=Q^{2} V$ \square $E=Q V$

| 0 | 6 | 4 |
| :--- | :--- | :--- | The kettle is switched on to heat some water.

The energy transferred to the heating element in the kettle is 260000 J .
The potential difference across the heating element is 1.3 V .

Calculate the charge flow in the heating element.
\qquad
\qquad
\qquad
\qquad
\qquad
Charge flow = \qquad C

Figure 17 shows a desk lamp connected to the mains electricity supply.

Figure 17

What does 'high-efficiency' mean?
Tick (\checkmark) one box.

A large proportion of the total energy input is destroyed.

A large proportion of the total energy input is usefully transferred.

A large proportion of the total energy input is wasted.
Tick (
\square
\square
\square

$\mathbf{0}$	$\mathbf{7}$.

How does the thermal energy affect the temperature of its surroundings?
[1 mark]
\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$ The output power of the lamp is 2.8 W0

Calculate the energy transferred by the lamp in 60 seconds.
Use the equation:

$$
\text { energy transferred }=\text { power } \times \text { time }
$$

\qquad
\qquad
\qquad
Energy transferred = \qquad J

Question 7 continues on the next page

| 0 | 7 |
| :--- | :--- |, 4 Mains electricity can be dangerous.

Table 2 shows information about the effects of different electrical supplies on the human body.

Table 2

Effect on the human body	Minimum current needed to cause pain in milliamps	
	50 Hz ac supply	$\mathbf{1 0 ~ 0 0 0 ~ H z ~ a c ~ s u p p l y ~}$
Mild pain	10	45
Moderate pain	15	65
Severe pain	20	80

ac is alternating current.

Compare the effects on the human body of 50 Hz ac with 10000 Hz ac.
Use data from Table 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} \quad$ A student investigated how the acceleration of a glider varied with the force causing |
| :--- | :--- | the acceleration.

Figure 18 shows the equipment used.
The air blower allows the glider to move along the air-track with almost no friction.

Figure 18

This is the method used.

1. Line up the front of the glider with the marker.
2. Release the glider.
3. Record the velocity as the glider passes through the light gate.
4. Repeat steps 1 to 3 using different masses on the mass holder.

The student calculated the weight of each mass to determine the force causing the acceleration.

| 0 | 8 | -1 | Which measurements does the datalogger need to calculate the velocity of |
| :--- | :--- | :--- | :--- | the glider?

Tick (\checkmark) one box.

The length of the card and the time taken to pass the light gate

The length of the string and the length of the card

The length of the string and the mass of the glider

The mass of the glider and the time taken to pass the light gate

Table 3 shows one set of results from the investigation.

Table 3

Mass on holder in kilograms	Change in velocity in $\mathbf{~ m / s}$	Time in seconds
0.025	0.50	0.40

$\begin{array}{lllll}0 & 8 & 2 & \text { Calculate the acceleration of the glider. }\end{array}$
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

0	8	3	Figure 19 shows the results.

Figure 19

What conclusion can the student make from the results in Figure 19?
Give a reason for your answer.

Conclusion \qquad
\qquad
Reason \qquad
\qquad

Calculate the change in gravitational potential energy of this mass.
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height
[2 marks]
gravitational potential energy $=$ mass \times gravitational field strength \times height
[2 marks]
\qquad
\qquad
\qquad
Change in gravitational potential energy = \qquad J

Question 8 continues on the next page

| 0 | $\mathbf{8}$ | $\mathbf{5}$ Another student used a wooden block pulled along a wooden board instead of a |
| :--- | :--- | :--- | :--- | glider on an air-track.

Figure 20 shows the wooden block.

Figure 20

How would the friction between the wooden block and the wooden board compare with the friction between the glider and the air-track?

Tick (\checkmark) one box.

The friction between the wooden block and the wooden board would be lower.

The friction between the wooden block and the wooden board would be the same.

The friction between the wooden block and the wooden board would be greater.

| 0 | 9 |
| :--- | :--- | The stopping distance of a vehicle depends on the thinking distance and the braking distance.

0	9	1	1

[1 mark]
\qquad
\qquad

The braking distance of a vehicle depends on the mass of the vehicle.
Use the Physics Equations Sheet to answer questions 09.2 and 09.3.

| 0 | $\mathbf{9}$ | $\mathbf{2}$ Write down the equation which links gravitational field strength (g), mass (m) and 10 |
| :--- | :--- | :--- | :--- | weight (W).

[1 mark]
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3}$ Calculate the mass of a vehicle with a weight of 14700 N. |
| :--- | :--- | :--- | :--- |

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg

Question 9 continues on the next page

The thinking distance travelled by a vehicle depends on the reaction time of the driver.

Using a mobile phone increases a driver's reaction time.

A mobile phone can be used in these ways:

- typing a text message
- making a phone call while holding the phone
- making a hands-free phone call using the car's audio system.

Figure 21 shows how different activities using a mobile phone affect a driver's reaction time.

Figure 21

Calculate the reaction time of a typical driver typing a text message while driving.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Reaction time $=$ \qquad s

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ The legal alcohol limit is the maximum amount of alcohol a person can have in the |
| :--- | :--- | :--- | :--- | bloodstream and still legally drive.

The reaction time of a typical driver at the legal alcohol limit is increased by 12%.

A student suggests that it should be illegal to use a mobile phone in any way while driving.

Explain how the information in Figure 21 supports the student's suggestion.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 1 | 0 |
| :--- | :--- |\quad Magnesium reacts with hydrochloric acid.

A student investigated the effect of changing the hydrochloric acid concentration on the rate of this reaction.

Figure 22 shows the apparatus.

Figure 22

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid to the conical flask.
2. Add a 3 cm strip of magnesium to the hydrochloric acid in the conical flask.
3. Fit the stopper and delivery tube to the top of the conical flask and start timing.
4. Record the volume of hydrogen gas collected in the measuring cylinder every 20 seconds for a total of 100 seconds.
5. Repeat steps 1 to 4 with a different concentration of hydrochloric acid.

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ What volume of hydrogen gas has been collected in the measuring cylinder |
| :--- | :--- | :--- | in Figure 22?

[1 mark]
Volume $=$ \qquad cm^{3}

| $\mathbf{1}$ | $\mathbf{0}$ | .2 |
| :--- | :--- | :--- | The stopper and delivery tube were fitted to the conical flask in step 3.

Explain why the time taken to fit the stopper and delivery tube may cause an error in this investigation.
\qquad
\qquad
\qquad
\qquad

Question 10 continues on the next page

Figure 23 shows the results for one concentration of hydrochloric acid.

Figure 23

1	$\mathbf{0}$.3

Use Figure 23.
\qquad s

How would the line of best fit for a higher concentration of hydrochloric acid compare with the line of best fit on Figure 23?

Tick (\checkmark) one box.

Initially the line of best fit would have a lower gradient.

Initially the line of best fit would have the same gradient.

Initially the line of best fit would have a higher gradient.

1	0	5

Give the result of the test.

Test \qquad
\qquad
Result \qquad

Turn over for the next question

1	$\mathbf{1}$	A student investigated magnetic fields.

Figure 24 shows a cube-shaped magnet and a magnetic compass.

Figure 24

1	1	1
Describe how the student could identify the poles of the magnet using the		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure $\mathbf{2 5}$ shows a wire with a current in it.
The arrow shows the direction of the current in the wire.
There is a magnetic field around the wire.

Figure 25

$1 \quad 1.2$ Figure 26 shows the wire when the current is in the opposite direction to Figure 25.

Figure 26

Complete Figure 26 to show the magnetic field around the wire.

| 1 | 1 | .3 |
| :--- | :--- | :--- | Figure 27 shows an electromagnet made from a coil of wire wrapped around an iron core.

Figure 27

When the switch is closed, there is a magnetic field around the electromagnet.

Label on Figure 27:

- the north pole \mathbf{N}
- the south pole \mathbf{S}.

The student opened the switch and placed a paper clip near the electromagnet.
When the switch was closed, the paper clip accelerated towards the electromagnet.
Use the Physics Equations Sheet to answer questions 11.4 and 11.5 .

| 1 | 1 | .4 |
| :--- | :--- | :--- | Write down the equation which links acceleration (a), mass (m) and resultant force (F).

\qquad

Calculate the initial acceleration of the paper clip.
mass of paper clip $=4.0 \times 10^{-4} \mathrm{~kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
|nitial acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$

| $\mathbf{1}$ | $\mathbf{1}$ | .6 |
| :--- | :--- | :--- | towards the magnet.

\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

ormation

For

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please Copyright © 2022 AQA and its licensors. All rights reserved.

