Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
GCSE
COMBINED SCIENCE: SYNERGY
8465/4F
Foundation Tier
Paper 4 Physical Sciences
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet
(enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO
\square
This question is about reactions of metals.

A student investigated the reactivity of three metals.

FIGURE 1 shows the order of reactivity of the three metals.

FIGURE 1

The student added each metal to three different metal sulfate solutions.

TABLE 1, on the opposite page, shows some of the results.

TABLE 1

	Metal sulfate solution		
Metal	Magnesium sulfate	Zinc sulfate	Copper sulfate
Magnesium	x		
Zinc	x	x	\checkmark
Copper			x

KEY
\checkmark reaction occurs
x no reaction
A more reactive metal displaces a less reactive metal from a compound.

[Turn over]

| 0 | 1 |
| :--- | :--- | :--- |

Complete TABLE 1, on page 5.
Use:

- \checkmark where a reaction occurs
- x where there is no reaction.

Use FIGURE 1, on page 4. [2 marks]

0	1

Zinc reacts with copper sulfate to produce zinc sulfate and copper.

Complete the word equation for the reaction. [1 mark]
zinc + \longrightarrow
$+$

Potassium is in Group 1 of the periodic table.

A teacher demonstrated the reaction of potassium with water.

FIGURE 2 shows the apparatus.

FIGURE 2

[Turn over]

0	1	3

What type of solution is formed when potassium reacts with water? [1 mark]

Tick (\checkmark) ONE box.

Acidic

Alkaline

Neutral

9

0	1	4

Which gas is produced when potassium reacts with water? [1 mark]

Tick (\checkmark) ONE box.

Carbon dioxide

Hydrogen

Oxygen

[Turn over]

Give ONE observation seen when potassium is added to water. [1 mark]

\section*{| 0 | 1. |
| :--- | :--- |}

Sodium is above potassium in Group 1 of the periodic table.

How does the reactivity of sodium compare with the reactivity of potassium? [1 mark]

Tick (\checkmark) ONE box.

Sodium is less reactive than potassium.

Sodium has the same reactivity as potassium.
$\square \begin{aligned} & \text { Sodium is more reactive than } \\ & \text { potassium. }\end{aligned}$

[Turn over]

011.7

FIGURE 3 shows the electronic structure of two different atoms.

FIGURE 3

Sodium atom

Magnesium atom

A sodium atom forms a Na^{+}ion.

Which ion does a magnesium atom form? [1 mark]

Tick (\checkmark) ONE box.

$\mathbf{M g +}$

Mg-

Mg ${ }^{2+}$

$\mathbf{M g}^{2-}$

[Turn over]

$0 \mid 2$

FIGURE 4 shows a student launching a toy aeroplane.

The student pulls on the aeroplane to stretch the spring and then lets go of the aeroplane.

FIGURE 4

Toy aeroplane

0 2. 1

Give ONE factor that would affect how high the aeroplane goes. [1 mark]

[Turn over]

\section*{| 0 | 2 |
| :--- | :--- |}

The extension of the spring is 0.20 m .
Calculate the elastic potential energy stored by the spring.
spring constant $=27 \mathrm{~N} / \mathrm{m}$
Use the equation:
elastic
potential $=0.5 \times \underset{\text { constant }}{\text { spring }} \times(\text { extension })^{2}$ energy
[2 marks]

Elastic potential energy =
J

A student investigated how the extension of the spring varied as the force on the spring was increased.

FIGURE 5 shows the results.
FIGURE 5
Extension in centimetres

[Turn over]

0.2 . 3

What is a correct conclusion about the relationship between force and extension from 0 to 9 N ? [1 mark]

Tick (\checkmark) ONE box.

Force and extension are inversely proportional.

Force and extension have a linear relationship.

Force and extension show a negative correlation.

19

BLANK PAGE

[Turn over]

The spring in FIGURE 5, on page 17, was stretched inelastically.

What was the extension when the spring was at the limit of proportionality? [2 marks]

Tick (\checkmark) ONE box.

9 cm

34 cm

40 cm

21

Give a reason for your answer.

[Turn over]

FIGURE 6
Extension in centimetres

KEY
\rightarrow Force on spring increasing
-*- Force on spring decreasing

23

0 2. 5

FIGURE 6, on the opposite page, shows what happened to the extension of the spring as the force was decreased.

Describe what happened to the spring as the force was decreased from 10 N to 0 N . [2 marks]
\qquad
\qquad
\qquad
\qquad

[Turn over]

24

$0 \mid 3$

This question is about ammonium chloride.

Ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ decomposes to produce ammonia $\left(\mathrm{NH}_{3}\right)$ and hydrogen chloride (HCl).

The reaction is reversible.
The equation for the reaction is:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

25

0	3

What is the state of hydrogen chloride in this reaction? [1 mark]

Tick (\checkmark) ONE box.

Aqueous

Gas

Liquid

Solid

[Turn over]

26

0 3. 2

How does the equation show that the reaction is reversible? [1 mark]
\qquad
\qquad

27

0	3

What is the total number of atoms in the formula $\mathrm{NH}_{4} \mathrm{Cl}$? [1 mark]

Tick (\checkmark) ONE box.

5

6

[Turn over]

28

\section*{| 0 | 3 |
| :--- | :--- | :--- |}

When does a reversible reaction reach dynamic equilibrium? [1 mark]

Tick (\checkmark) ONE box.

When the forward reaction is slower than the reverse reaction.

When the forward reaction and the reverse reaction have the same rate.

When the forward reaction is faster than the reverse reaction.

\section*{| 0 | 3 | 5 |
| :--- | :--- | :--- |}

How must the apparatus for the reaction be designed so that dynamic equilibrium can be reached? [1 mark]

Tick (\checkmark) ONE box.

So all of the substances can escape.

So none of the substances can escape.

So only ammonia and hydrogen chloride can escape.
[Turn over]

03.6

FIGURE 7 represents the electronic structure of a chlorine atom (Cl).

FIGURE 7

Which diagram represents the electronic structure of a chloride ION (Cl-)? [1 mark]

Tick (\checkmark) ONE box.

[Turn over]

Calculate the percentage (\%) by mass of nitrogen (N) in NH_{3}

Relative atomic mass $\left(A_{\mathrm{r}}\right): \quad \mathrm{N}=14$
Relative formula mass $\left(M_{\mathrm{r}}\right): \quad \mathrm{NH}_{3}=17$

33

Give your answer to 2 significant figures. [3 marks]

\qquad
\qquad

Percentage (2 significant figures)
$\%$

[Turn over]

FIGURE 8 represents ammonia.
FIGURE 8
$\mathrm{H}-\mathrm{N}-\mathrm{H}$ I
\mathbf{H}

0	3

What does '-_' represent in FIGURE 8? [1 mark]

\section*{| 0 | 3 |
| :--- | :--- | .9}

What type of particle is ammonia?
[1 mark]
Tick (\checkmark) ONE box.

Atom

Ion

[Turn over]

0	4

Two students investigated how the current in filament lamp L varied with the potential difference across the lamp.

FIGURE 9 shows the circuit used.
FIGURE 9

\section*{| 0 | 4 | 1 |
| :--- | :--- | :--- |}

What is component P ? [1 mark]
Tick (\checkmark) ONE box.

Battery

Cell

Fuse

[Turn over]

0	4

The resistance of the variable resistor is increased.

How does increasing the resistance of the variable resistor affect the reading on the ammeter? [1 mark]

Tick (\checkmark) ONE box.

The ammeter reading decreases.

The ammeter reading stays the same.

The ammeter reading increases.

FIGURE 10 shows the results.
FIGURE 10
Current in amps

FIGURE 11, on page 40, shows the line of best fit drawn by each student.
[Turn over]

FIGURE 11
Student A
Current in amps
 Potential difference in volts

Student B

Current in amps

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">4</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 4 |
| :--- | :--- |</table-markdown></div>

Explain why student B's line of best fit is correct. [2 marks]

[Turn over]

42

0	4

What type of error will have caused the point at 2 V to be above the line of best fit? [1 mark]

Tick (\checkmark) ONE box.

A random error

A systematic error

A zero error

$0 \mid 4.5$

When the potential difference across the filament lamp is 1.5 V , the current in the lamp is 0.3 A .

Calculate the resistance of the filament lamp. [2 marks]

Use the equation:

resistance $=\frac{\text { potential difference }}{\text { current }}$

Resistance $=$

0	4

The students investigated how the length of a wire affects the resistance of the wire.

FIGURE 12 shows the circuit used.
The temperature of the wire was kept constant.

FIGURE 12

45
Identify the variables in the investigation. [3 marks]
Tick (\checkmark) ONE box in EACH row.

Variable	Control variable	Dependent variable	Independent variable
Length of the wire			
Resistance of the wire			
Temperature of the wire			

[Turn over]

$0 \mid 5$

This question is about solutions.

0	5	1

$0.4 \mathrm{dm}^{3}$ of a solution contains 24 g of solute.

Calculate the concentration of the solution. [2 marks]

Use the equation:
concentration $=\frac{\text { mass of solute }}{\text { volume of solution }}$

Concentration $=$

$\mathrm{g} / \mathrm{dm}^{3}$

47

\square
What is meant by a 'solute'? [1 mark]

0	5

Sugar solution X and sugar solution Y have different concentrations.

A student investigated which solution had the higher concentration.

The student evaporated sugar solution at a temperature of $40^{\circ} \mathrm{C}$ until only sugar remained.

FIGURE 13, on page 48, shows the equipment used.
[Turn over]

FIGURE 13

Oven

Evaporating dish

Measuring cylinder

Balance the higher concentration. [6 marks]
\qquad
[Turn over]

50

0	5	4

FIGURE 14 shows the balance.
FIGURE 14

The resolution is the smallest change in the quantity being measured that a measuring instrument can show.

[Turn over]

What is the resolution of the balance? [1 mark]

Tick (\checkmark) ONE box.

0.01 g

0.10 g

BLANK PAGE

[Turn over]

The National Grid transfers electrical power efficiently
from power stations to houses.

55

\section*{| 0 | 6.1 |
| :--- | :--- |}

The step-down transformer supplies mains electricity to the houses.

Complete the sentence.
Choose the answer from the list. [1 mark]
charge
current
potential difference
resistance

The step-down transformer decreases the

[Turn over]

56

FIGURE 16 shows an electric kettle plugged into a socket in a house.

FIGURE 16

\section*{| 0 | 6 |
| :--- | :--- | :--- |}

The cable connecting the kettle to the socket is a three-core cable.

The insulation on each wire is a different colour.

Draw ONE line from each wire to the colour of insulation. [3 marks]

WIRE
COLOUR OF
INSULATION
Earth
Blue

Brown

Live
Green and yellow

Purple

Neutral
Yellow and brown
[Turn over]

58

Use the Physics Equations Sheet to answer questions 06.3 and 06.4.

0	6	3

Which equation links charge flow (Q), energy (E) and potential difference (V)? [1 mark]

Tick (\checkmark) ONE box.
$\square E=\frac{Q}{V}$
$\square E=\frac{Q}{V^{2}}$

$E=Q^{2} V$
$\square E=Q V$

0	6

The kettle is switched on to heat some water.

The energy transferred to the heating element in the kettle is 260000 J .

The potential difference across the heating element is 1.3 V .

Calculate the charge flow in the heating element. [3 marks]
[Turn over]
|||||||||||||

60

Charge flow =

c

BLANK PAGE

[Turn over]

62

$0 \mid 7$

FIGURE 17 shows a desk lamp connected to the mains electricity supply.

FIGURE 17

63

\section*{| 0 | 7. | 1 |
| :--- | :--- | :--- |}

The desk lamp is fitted with a highefficiency LED bulb.

What does 'high-efficiency' mean? [1 mark]

Tick (\checkmark) ONE box.

A large proportion of the total energy input is usefully transferred.

A large proportion of the total energy input is wasted.
[Turn over]

64

0	7

The LED bulb wastes energy as thermal energy.

How does the thermal energy affect the temperature of its surroundings? [1 mark]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">7</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 7 |
| :--- | :--- |</table-markdown></div>

The output power of the lamp is 2.8 W .
Calculate the energy transferred by the lamp in 60 seconds.

Use the equation:
energy transferred $=$ power \times time [2 marks]

Energy transferred =
J
[Turn over]

0	7.

Mains electricity can be dangerous.
TABLE 2 shows information about the effects of different electrical supplies on the human body.

TABLE 2

Effect on the human body	Minimum current needed to cause pain in milliamps	
	50 Hz ac supply	10000 Hz ac supply
Mild pain	10	45
Moderate pain	15	65
Severe pain	20	80

ac is alternating current.
Compare the effects on the human body of 50 Hz ac with 10000 Hz ac.

Use data from TABLE 2, on the opposite page. [4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
[Turn over]

68

0	8

A student investigated how the acceleration of a glider varied with the force causing the acceleration.

FIGURE 18 shows the equipment used.
The air blower allows the glider to move along the air-track with almost no friction.

FIGURE 18

Air blower

This is the method used.

1. Line up the front of the glider with the marker.
2. Release the glider.
3. Record the velocity as the glider passes through the light gate.
4. Repeat steps 1 to 3 using different masses on the mass holder.

The student calculated the weight of each mass to determine the force causing the acceleration.
[Turn over]
\square
Which measurements does the datalogger need to calculate the velocity of the glider? [1 mark]

Tick (\checkmark) ONE box.

The length of the card and the time taken to pass the light gate

The length of the string and the length of the card

The length of the string and the mass of the glider

The mass of the glider and the time taken to pass the light gate

TABLE 3 shows one set of results from the investigation.

TABLE 3

Mass on holder in kilograms	Change in velocity in m / s	Time in seconds
0.025	0.50	0.40

[Turn over]

0	8

Calculate the acceleration of the glider. [2 marks]

Use the equation:
acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$

Acceleration = $\mathrm{m} / \mathrm{s}^{2}$

73

BLANK PAGE

[Turn over]

0	8

FIGURE 19 shows the results.
FIGURE 19
Acceleration
in $\mathrm{m} / \mathbf{s}^{2}$

75
What conclusion can the student make from the results in FIGURE 19, on the opposite page?

Give a reason for your answer. [2 marks]

Conclusion

Reason

[Turn over]

っ
II
Change in gravitational potential energy
[Turn over]

Another student used a wooden block pulled along a wooden board instead of a glider on an air-track.

FIGURE 20 shows the wooden block.
FIGURE 20

How would the friction between the wooden block and the wooden board compare with the friction between the glider and the air-track? [1 mark]

Tick (\checkmark) ONE box.
The friction between the wooden block and the wooden board would be lower.

The friction between the wooden block and the wooden board would be the same.

The friction between the wooden block and the wooden board would be greater.

[Turn over]

$0 \mid 9$

The stopping distance of a vehicle depends on the thinking distance and the braking distance.

0	9	.1

What is meant by 'braking distance'? [1 mark]

The braking distance of a vehicle depends on the mass of the vehicle.

Use the Physics Equations Sheet to answer questions 09.2 and 09.3.

0	9

Write down the equation which links gravitational field strength (g), mass (m) and weight (W). [1 mark]

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">9</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 9 | 3 |
| :--- | :--- | :--- |</table-markdown></div>

Calculate the mass of a vehicle with a weight of 14700 N .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$ [3 marks]

BLANK PAGE

[Turn over]

The thinking distance travelled by a vehicle depends on the reaction time of the driver.

Using a mobile phone increases a driver's reaction time.

A mobile phone can be used in these ways:

- typing a text message
- making a phone call while holding the phone
- making a hands-free phone call using the car's audio system.

FIGURE 21, on the opposite page, shows how different activities using a mobile phone affect a driver's reaction time.

85

FIGURE 21

Percentage (\%) increase in reaction time

[Turn over]

86

0	9

The reaction time of a typical driver is 0.50 s .

Calculate the reaction time of a typical driver typing a text message while driving. [3 marks]
\square
The legal alcohol limit is the maximum amount of alcohol a person can have in the bloodstream and still legally drive.

The reaction time of a typical driver at the legal alcohol limit is increased by 12%.

A student suggests that it should be illegal to use a mobile phone in any way while driving.

Explain how the information in FIGURE 21, on page 85, supports the student's suggestion. [4 marks]
[Turn over]

88
\qquad
\qquad
\qquad
$\overline{12}$

Magnesium reacts with hydrochloric acid.

A student investigated the effect of changing the hydrochloric acid concentration on the rate of this reaction.

FIGURE 22, on page 90, shows the apparatus.
[Turn over]

FIGURE 22

Stopwatch

91

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid to the conical flask.
2. Add a 3 cm strip of magnesium to the hydrochloric acid in the conical flask.
3. Fit the stopper and delivery tube to the top of the conical flask and start timing.
4. Record the volume of hydrogen gas collected in the measuring cylinder every 20 seconds for a total of 100 seconds.

5 Repeat steps 1 to 4 with a different concentration of hydrochloric acid.
[Turn over]

92

1	0	1

What volume of hydrogen gas has been collected in the measuring cylinder in FIGURE 22, on page 90? [1 mark]

Volume $=\ldots \mathrm{cm}^{3}$

1	0	2

The stopper and delivery tube were fitted to the conical flask in step 3.

Explain why the time taken to fit the stopper and delivery tube may cause an error in this investigation. [2 marks]
\qquad
\qquad
\qquad
\qquad

FIGURE 23 shows the results for one concentration of hydrochloric acid.

FIGURE 23
Volume of hydrogen
gas collected in cm^{3}

[Turn over]

94

\section*{| 1 | 0. |
| :--- | :--- |}

Determine the time taken for the reaction to be complete.

Use FIGURE 23, on page 93. [1 mark]
Time taken $=$
S

95

\section*{| 1 | 0. |
| :--- | :--- |}

The student repeated the method using a higher concentration of hydrochloric acid.

How would the line of best fit for a higher concentration of hydrochloric acid compare with the line of best fit on FIGURE 23, on page 93? [1 mark]

Tick (\checkmark) ONE box.

Initially the line of best fit would have a lower gradient.

Initially the line of best fit would have the same gradient.

Initially the line of best fit would have a higher gradient.
[Turn over]

96

\section*{| 1 | 0.5 |
| :--- | :--- |}

Describe the test for hydrogen gas.
Give the result of the test. [2 marks]
Test

Result

\qquad
\qquad

BLANK PAGE

[Turn over]

98

11

A student investigated magnetic fields.
FIGURE 24 shows a cube-shaped magnet and a magnetic compass.

FIGURE 24

99

Describe how the student could identify the poles of the magnet using the magnetic compass. [2 marks]

[Turn over]

FIGURE 25 shows a wire with a current in it.

The arrow shows the direction of the current in the wire.

There is a magnetic field around the wire.

FIGURE 25

Magnetic field lines

11 . 2
FIGURE 26 shows the wire when the current is in the opposite direction to FIGURE 25, on the opposite page.

FIGURE 26

Complete FIGURE 26 to show the magnetic field around the wire. [1 mark]
[Turn over]

102

11 . 3

FIGURE 27 shows an electromagnet made from a coil of wire wrapped around an iron core.

FIGURE 27

Coil of wire

When the switch is closed, there is a magnetic field around the electromagnet.

Label on FIGURE 27, on the opposite page:

- the north pole \mathbf{N}
- the south pole S. [1 mark]

The student opened the switch and placed a paper clip near the electromagnet.

When the switch was closed, the paper clip accelerated towards the electromagnet.
[Turn over]

104

Use the Physics Equations Sheet to answer questions 11.4 and 11.5.

1 1. 14
Write down the equation which links acceleration (a), mass (m) and resultant force (F). [1 mark]

1 1. 5

The initial resultant force on the paper clip was $4.8 \times 10^{-3} \mathrm{~N}$.

Calculate the initial acceleration of the paper clip.
mass of paper clip $=4.0 \times 10^{-4} \mathbf{~ k g}$ [3 marks]

105

Initial acceleration =
 $\mathrm{m} / \mathrm{s}^{2}$

[Turn over]

106

11 . 6

Explain why the acceleration of the paper clip changes as the paper clip moves towards the magnet. [2 marks]
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

BLANK PAGE

[Turn over]

$|$| Additional page, if required. Write the |
| :--- |
| question numbers in the left-hand margin. |

$|$| Additional page, if required. Write the |
| :--- |
| question numbers in the left-hand margin. |

$|$| Additional page, if required. Write the |
| :--- |
| question numbers in the left-hand margin. |

$|$| Additional page, if required. Write the |
| :--- |
| question numbers in the left-hand margin. |

112

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

G/LM/Jun22/8465/4F/E2

