
JUN2285251A01

Surname

Other Names

Centre Number

Candidate Number

Candidate Signature

I declare this is my own work.

GCSE
COMPUTER SCIENCE
Paper 1 Computational thinking and

programming skills – C#
8525/1A

Time allowed: 2 hours

At the top of the page, write your
surname and other names, your centre
number, your candidate number and add
your signature.

[Turn over]

A

2

02

BLANK PAGE

3

03

For this paper you must have:
• an insert.
You must NOT use a calculator.

INSTRUCTIONS

• Use black ink or black ball-point pen.

Use pencil only for drawing.
• Answer ALL questions.
• You must answer the questions in the

spaces provided.
• If you need extra space for your

answer(s), use the lined pages at the
end of this book. Write the question
number against your answer(s).

• Do all rough work in this book. Cross
through any work you do not want to
be marked.

[Turn over]

4

04

• Questions that require a coded solution
must be answered in C#.

• You should assume that all indexing in
code starts at 0 unless stated
otherwise.

INFORMATION

The total number of marks available for
this paper is 90.

ADVICE

For the multiple-choice questions,
completely fill in the lozenge alongside
the appropriate answer.

5

05

CORRECT METHOD

WRONG METHODS

If you want to change your answer
you must cross out your original
answer as shown.

If you wish to return to an answer
previously crossed out, ring the
answer you now wish to select as
shown.

DO NOT TURN OVER UNTIL TOLD TO
DO SO

6

06

Answer ALL questions.

0 1

An algorithm, that uses the modulus
operator, has been represented using
pseudo-code in FIGURE 1, provided on
page 2 of the insert.

• Line numbers are included but are not

part of the algorithm.

The modulus operator is used to
calculate the remainder after dividing
one integer by another.

For example:
• 14 MOD 3 evaluates to 2

• 24 MOD 5 evaluates to 4

7

07

0 1 . 1

Shade ONE lozenge that shows the line
number where selection is FIRST used
in the algorithm in FIGURE 1. [1 mark]

 A Line number 1

 B Line number 2

 C Line number 3

 D Line number 4

[Turn over]

8

08

0 1 . 2

Shade ONE lozenge that shows the
output from the algorithm in FIGURE 1
when the user input is 4 [1 mark]

 A 0

 B 2

 C 4

 D 8

 E 16

9

09

0 1 . 3

Shade ONE lozenge that shows the line
number where assignment is FIRST
used in the algorithm in FIGURE 1.
[1 mark]

 A Line number 1

 B Line number 2

 C Line number 3

 D Line number 4

[Turn over]

10

10

0 1 . 4

Shade ONE lozenge that shows the line
number that contains a relational
operator in the algorithm in FIGURE 1.
[1 mark]

 A Line number 1

 B Line number 2

 C Line number 3

 D Line number 4

11

11

0 1 . 5

Shade ONE lozenge to show which of
the following is a TRUE statement about
the algorithm in FIGURE 1, provided on
page 2 of the insert. [1 mark]

 A This algorithm uses a Boolean

operator.

 B This algorithm uses a named
constant.

C This algorithm uses iteration.

 D This algorithm uses the
multiplication operator.

[Turn over]

12

*12
*

0 1 . 6

FIGURE 2, provided on page 3 of the insert, shows an
implementation of the algorithm in FIGURE 1, provided
on page 2 of the insert, using the C# programming
language.

• Line numbers are included but are not part of the
program.

The program in FIGURE 2 needs to be changed so that it
repeats five times using DEFINITE (count controlled)
iteration.

Shade ONE lozenge, on pages 13 to 16, next to the
program that does this correctly. [1 mark]

13

*13
*

 A

 for (int x = 0; x < 5; x++) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
}

[Turn over]

14

*14
*

 B

for (int x = 0; x < 6; x++) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
}

15

*15
*

 C

 int x = 1;
while (x != 6) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
 x = x + 1;
}

[Turn over]

16

*16
*

 D

int x = 6;
while (x != 0) {
 Console.Write("Enter a number: ");
 int i = Convert.ToInt32(Console.ReadLine());
 if (i % 2 == 0) {
 Console.WriteLine(i * i);
 }
 else {
 Console.WriteLine(i);
 }
 x = x - 1;
}

6

17

*17
*

BLANK PAGE

[Turn over]

18

*18
*

0 2

FIGURE 3, provided on pages 4 and 5 of the insert, shows
an algorithm, represented using pseudo-code, that
calculates the delivery cost for an order from a takeaway
company.

*19
*

19
0 2 . 1

Using FIGURE 3, complete the table. [2 marks]

Input value of
orderTotal

Input value of
deliveryDistance

Output

55.5 2

35.0 5

[Turn over]

20

20

0 2 . 2

State how many possible values the
result of the comparison
deliveryDistance ≤ 5 could have
in the algorithm shown in FIGURE 3.
[1 mark]

0 2 . 3

State the most suitable data type for the
following variables used in FIGURE 3.
[2 marks]

Variable identifier Data type

deliveryCost

messageOne

21

21

0 2 . 4

State ONE other common data type that
you have NOT given in your answer to
Question 02.3. [1 mark]

[Turn over]

22

22

0 3

FIGURE 4, provided on pages 6 and 7 of
the insert, shows a C# program that
calculates car park charges.

The user inputs their car registration
(eg MA19 GHJ) and the length of the
stay.

The program then outputs the charge.

• Line numbers are included but are not

part of the program.

23

23

0 3 . 1

Rewrite LINE 5 in FIGURE 4 to
CONCATENATE the car registration with
the string " is not valid", and store
the result in the variable
displayMessage.

Your answer must be written in C#.
[1 mark]

[Turn over]

24

24

0 3 . 2

The charge for parking for two or more
hours is changed to include an
additional £2 fee.

Rewrite LINE 15 in FIGURE 4 to show
this change.

Your answer must be written in C#.
[1 mark]

8

25

25

BLANK PAGE

[Turn over]

26

26

0 4

The two C# programs in FIGURE 5,
provided on pages 8 and 9 of the insert,
output the value that is equivalent to
adding together the integers between
1 and an integer entered by the user.

For example, if the user entered the
integer 5, both programs would output
15

27

27

0 4 . 1

Shade ONE lozenge to indicate which of
the statements is true about the
programs in FIGURE 5. [1 mark]

 A Both programs are equally

efficient.

 B Program A is more efficient
than Program B.

 C Program B is more efficient
than Program A.

[Turn over]

28

28

BLANK PAGE

29

29

0 4 . 2

Justify your answer for Question 04.1, on
page 27. [2 marks]

[Turn over]

30

30

0 5

A programmer has started to write a
program using C#. Their program is
shown in FIGURE 6, provided on
page 10 of the insert.

The program should generate and output
10 numbers, each of which is randomly
selected from the numbers in a data
structure called numbers.

The program uses the Random class.

For example, r.Next(0, 8) would
generate a random integer between
0 and 7 inclusive.

One possible output from the finished
program would be 11, 14, 14, 42, 2, 56,
56, 14, 4, 2

• Line numbers are included but are not

part of the program.

31

31

BLANK PAGE

[Turn over]

32

32

0 5 . 1

The program shown in FIGURE 6
contains a syntax error.

Shade TWO lozenges to indicate the
statements that are true about syntax
errors. [2 marks]

 A A syntax error can be found by

testing boundary values in a
program.

 B A syntax error is a mistake in
the grammar of the code.

 C A syntax error is generally
harder to spot than a logic
error.

 D A syntax error will stop a
program from running.

33

33

 E An example of a syntax error is
trying to access the fifth
character in a string which only
contains four characters.

0 5 . 2

The program shown in FIGURE 6 also
contains a logic error.

Identify the line number that contains
the logic error, and correct this line of
the program.

Your corrected line must be written in
C#. [2 marks]

Line number
Corrected line

[Turn over]

34

34

0 5 . 3

What type of data structure is the
variable numbers? [1 mark]

8

35

35

0 6

A program is being developed that
allows users to rate and review movies.
A user will enter their rating (out of 10)
and a written review for each movie they
have watched.

Computational thinking skills are used
during the development of the program.

0 6 . 1

Define the term ABSTRACTION. [1 mark]

[Turn over]

36

36

0 6 . 2

A user will be able to register, log in and
log out of the program. When
registering, a new user will enter their
details, before confirming their email
address.

DECOMPOSITION has been used to
break the problem down into smaller
sub-problems.

FIGURE 7, provided on page 12 of the
insert, represents the design of the
program.

Complete the decomposition of this
program by stating what should be
written in boxes and . [2 marks]

37

37

[Turn over]

38

38

0 7

Write a C# program to check if an email
address has been entered correctly by a
user.

Your program must:
• get the user to input an email

address
• get the user to input the email

address a second time
• output the message Match AND

output the email address if the email
addresses entered are the same

• output the message Do not match
if the email addresses entered are
not the same.

You SHOULD use meaningful variable
name(s) and C# syntax in your answer.

39

39

The answer grid below and on pages 40
to 43, contains vertical lines to help you
indent your code. [5 marks]

[Turn over]

40

40

41

41

[Turn over]

42

42

43

43

[Turn over]

8

44

44

0 8

Write a C# program that calculates the
value of a bonus payment for an
employee based on how many items they
have sold and the number of years they
have been employed.

The program should:
• get the user to input the number of

items sold
• get the user to input the number of

years employed
• output the value of the bonus payment:
 if the years of employment is less

than or equal to 2 AND the number of
items sold is greater than 100, then
the bonus will be the number of
items sold multiplied by 2

45

45

 if the years of employment is greater
than 2, then the bonus will be the
number of items sold multiplied by
10

 otherwise, the bonus is 0

You SHOULD use meaningful variable
name(s) and C# syntax in your answer.

The answer grid, on pages 47 to 51,
contains vertical lines to help you indent
your code. [7 marks]

[Turn over]

46

46

BLANK PAGE

47

47

[Turn over]

48

48

49

49

[Turn over]

50

50

51

51

[Turn over]

52

52

0 9

FIGURE 8, provided on page 13 of the
insert, shows an algorithm represented
using pseudo-code.

• Line numbers are included but are not

part of the algorithm.

SUBSTRING returns part of a string.

For example,
SUBSTRING(3, 5, 'programming')
will return the string 'gra'.

53

53

0 9 . 1

Shade ONE lozenge which shows the
output of LINE 4 from the algorithm
shown in FIGURE 8. [1 mark]

 A F

 B Freddie

 C Lily

 D S

 E Sarah

[Turn over]

54

54

0 9 . 2

Shade ONE lozenge which shows the
output of LINE 5 from the algorithm
shown in FIGURE 8. [1 mark]

 A 1

 B 2

 C 4

 D 5

 E 10

55

55

0 9 . 3

State the output of LINE 7 from the
algorithm shown in FIGURE 8. [1 mark]

[Turn over]

56

*56
*

BLANK PAGE

57

*57
*

0 9 . 4

Two extra lines are being added to the end of the
algorithm in FIGURE 8.

Fill in the gaps so the output from the new final line will
be the string 'Thomasrah'. [2 marks]

var SUBSTRING(_____ , _____ , name1)

OUTPUT names[______] + var

[Turn over]

12

58

58

1 0

FIGURE 9, provided on page 14 of the
insert, shows a subroutine represented
using pseudo-code.

The DIV operator is used for integer
division.

1 0 . 1

On the opposite page, complete the trace
table for the subroutine call
calculate(50)

You may not need to use all the rows in
the table. [4 marks]

59

59

n a b OUTPUT

50

[Turn over]

60

60

1 0 . 2

State the value that will be output for
the subroutine call calculate(1)
[1 mark]

1 0 . 3

The identifier for the variable b in
FIGURE 9 was not a good choice.

State a better identifier for this variable
that makes the algorithm easier to read
and understand. [1 mark]

61

61

BLANK PAGE

[Turn over]

62

62

1 0 . 4

A REPEAT…UNTIL iteration structure
was used in FIGURE 9.

FIGURE 10, provided on page 15 of the
insert, shows another subroutine called
calculate that uses a
WHILE…ENDWHILE iteration structure.

One difference in the way the
subroutines in FIGURE 9 and FIGURE 10
work is:
• the REPEAT…UNTIL iteration structure

in FIGURE 9 loops until the condition
is true

• the WHILE…ENDWHILE iteration
structure in FIGURE 10 loops until the
condition is false.

63

63

Describe TWO other differences in the
way the subroutines in FIGURE 9 and
FIGURE 10 work. [2 marks]

1

2

[Turn over]

8

64

*64
*

1 1 . 1

The size of a sound file is calculated using the following
formula:

size (in bits) = sampling rate * sample resolution * seconds

To calculate the size IN BYTES, the number is divided by 8

The algorithm in FIGURE 12, represented using pseudo-
code, should output the size of a sound file in BYTES that
has been sampled 100 times per second, with a sample
resolution of 16 bits and a recording length of 60 seconds.

A subroutine called getSize has been developed as part
of the algorithm.

65

*65
*

Complete FIGURE 12, on page 67, by filling in the gaps
using the items in FIGURE 11, provided on page 16 of the
insert.

You will not need to use all the items in FIGURE 11.
[6 marks]

[Turn over]

66

*66
*

BLANK PAGE

67

*67
*

FIGURE 12

SUBROUTINE getSize(, , seconds)

 sampRate * res * seconds

size

 size

ENDSUBROUTINE

OUTPUT (100, 16, 60)

[Turn over]

68

68

1 1 . 2

A local variable called size has been
used in getSize.

Explain what is meant by a local variable
in a subroutine. [1 mark]

69

69

1 1 . 3

State THREE advantages of using
subroutines. [3 marks]

1

2

3

[Turn over]

10

70

70

1 2

FIGURE 13, provided on pages 18 and 19
of the insert, shows an algorithm
represented in pseudo-code. A
developer wants to check the algorithm
works correctly.

• Line numbers are included but are not

part of the algorithm.

1 2 . 1

On the opposite page, complete the trace
table for the algorithm shown in
FIGURE 13.

Some values have already been entered.
You may not need to use all the rows in
the table. [6 marks]

71

71

arr
i j temp

[0] [1] [2]

c b a

[Turn over]

72

72

1 2 . 2

State the purpose of the algorithm.
[1 mark]

73

73

1 2 . 3

An earlier attempt at writing the
algorithm in FIGURE 13 had different
code for LINES 4 and 5.

LINES 4 and 5 of the pseudo-code were:

FOR i 0 TO 2

 FOR j 0 TO 2

Explain why the algorithm did not work
when the value 2 was used instead of the
value 1 on these two lines. [1 mark]

[Turn over]

8

74

74

1 3

A program is being developed in C# to
simulate a card game.

Throughout the game each player always
has 100 cards. Each card displays a
number.

Players take it in turns to swap one of
their cards with another random card
from a set of cards until a player has a
run of five numbers in sequence within
their 100 cards.

1 3 . 1

FIGURE 14, provided on page 19 of the
insert, shows part of the program that
will get a player to enter the position of
a card to swap.

Extend the program in FIGURE 14.
Your answer must be written in C#.

75

75

The program should keep getting the
user to enter the card position until
they enter a card position that is
between 1 and 100 inclusive.

You SHOULD use meaningful variable
name(s) and C# syntax in your answer.

The answer grid, on page 77, contains
vertical lines to help you indent your
code. [4 marks]

[Turn over]

76

76

BLANK PAGE

77

77

[Turn over]

78

78

1 3 . 2

There are 500 cards within the game in
total. Each card is numbered from 1 to
250 and each number appears twice in
the whole set of cards.

The player’s 100 cards are always
stored in numerical order.

When a player has a valid run of five
cards within their 100 cards they have
won the game.

A valid run:
• consists of five cards
• can start from any position in the

player’s 100 cards
• the second card’s value is one more

than the first card’s value, the third
card’s value is one more than the
second card’s value, the fourth

79

79

card’s value is one more than the
third card’s value, and the fifth
card’s value is one more than the
fourth card’s value.

Below are examples of valid runs
which means a player has won.

VALID RUN EXAMPLE 1

VALID RUN EXAMPLE 2

[Turn over]

80

80

Below are examples of invalid runs.

INVALID RUN EXAMPLE 1

INVALID RUN EXAMPLE 2

INVALID RUN EXAMPLE 3

81

81

Write a C# program to check if a player
has a valid run of five cards within their
100 cards.

When writing your program you
should assume:
• there is an array called cards that

contains the values of the player’s
100 cards

• cards[0] will contain the value of
the first card and cards[99] will
contain the value of the last card

• the values in cards are already
stored in numerical order

• there is a Boolean variable called
gameWon that has a value of False.

[Turn over]

82

82

Your program should set gameWon to
True if there is a valid run.

You SHOULD use meaningful variable
name(s) and C# syntax in your answer.

The answer grid, on pages 83 to 86,
contains vertical lines to help you indent
your code. [6 marks]

83

83

[Turn over]

84

84

85

85

[Turn over]

86

86

10

87

87

BLANK PAGE

[Turn over]

88

*88
*

1 4

A program is being written to simulate a computer
science revision game in the style of bingo.

At the beginning of the game a bingo ticket is generated
with nine different key terms from computer science in a
3 x 3 grid. An example bingo ticket is provided in
FIGURE 15, provided on page 20 of the insert.

The player will then be prompted to answer a series of
questions.

If an answer matches a key term on the player’s bingo
ticket, then the key term will be marked off automatically.

89

*89
*

BLANK PAGE

[Turn over]

90

*90
*

1 4 . 1

FIGURE 16, on pages 92 and 93, shows an incomplete C#
program to create a bingo ticket for a player.

The programmer has used a two-dimensional array called

ticket to represent a bingo ticket.

The program uses a subroutine called
generateKeyTerm. When called, the subroutine will
return a random key term, eg "CPU", "ALU", "NOT
gate" etc.

Complete the C# program in FIGURE 16, on pages 92 and
93, by filling in the five gaps.

91

*91
*

• Line numbers are included but are not part of the
program.

[4 marks]

[Turn over]

92

*92
*

FIGURE 16

1 string[,] ticket = new string[,] {{"","",""},
 {"","",""},

 {"","",""}};

2 int i = 0;

3 while (i < 3) {

4 int j = ;

5 while (j < 3) {

6 ticket[,

] = generateKeyTerm();

93

*93
*
 7

;

8 }

9
;

10 }

[Turn over]

94

94

1 4 . 2

Each time a player answers a question
correctly the ticket array is updated; if
their answer is in the ticket array then
it is replaced with an asterisk (*).

An example of the ticket array
containing key terms and asterisks is
shown in FIGURE 17, on page 20 of the
insert.

Write a subroutine in C# called
checkWinner that will count the
number of asterisks.

The subroutine should:
• take the ticket array as a

parameter
• count the number of asterisks in the
ticket array

95

95

• output the word Bingo if there are
nine asterisks in the array

• output the total number of asterisks
if there are fewer than nine asterisks
in the array.

You MUST write your own count routine
and not use any built-in count function
that might be available in C#.

You SHOULD use meaningful variable
name(s) and C# syntax in your answer.

The answer grid, on pages 97 to 100,
contains vertical lines to help you
indent your code. [8 marks]

[Turn over]

96

96

BLANK PAGE

97

97

[Turn over]

98

98

99

99

[Turn over]

100

100

END OF QUESTIONS

12

101

101

 Additional page, if required.
 Write the question numbers in the
 left-hand margin.

102

102

 Additional page, if required.
 Write the question numbers in the
 left-hand margin.

103

103

 Additional page, if required.
 Write the question numbers in the
 left-hand margin.

104

104

For Examiner’s Use

Question Mark
1

2–3

4–5

6–7

8–9

10

11

12

13

14

TOTAL

BLANK PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are
published in a separate booklet. This booklet is published after each live examination
series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases,
efforts to contact copyright-holders may have been unsuccessful and AQA will be happy
to rectify any omissions of acknowledgements. If you have any queries please contact
the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

IB/M/TT/Jun22/8525/1A/E3

226G8525/1A

