

Functional Skills Level 1 MATHEMATICS 8361/2

Paper 2 Calculator

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

Functional Skills examinations are marked in such a way as to award positive achievement wherever possible. Thus, for Functional Skills Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1		B1	accept line of symmetry drawn on correct shape if no others drawn.

Q	Answer	Mark	Comments	
	2.702, 2.6(00), 2.45(0), 2.035	B2	B1 reverse order or one value in incorrect posit	ion
_	Additional Guidance			
2	eg 2.702, 2.035, 2.6, 2.45			B1
	eg 2.702, 2.45, 2.6, 2.035			B1
	Allow misread if order not affected			

Q	Answer	Mark	Comments	
	3071	B1		
3	Ad	ditional G	Guidance	
	Ignore punctuation eg 3,071			

Q	Answer	Mark	Comments	
	West	B1	accept W	
	Additional Guidance			
4	Ignore other non-contradictory words if West seen			
	eg anticlockwise West B1			
Condone incorrect spelling if intention is clear				

Q	ļ	Answer		Mark		Comments	
	$\frac{65}{100}$ or $\frac{13}{20}$			B1	oe fraction		
	70(%)			B1			
			Ad	ditional G	Guidance		
	Fraction	Decimal	Percenta	ge			
5	65 100	0.65	65%				B1B1
	7 10	0.7	70(%)				
	Ignore incorrec	t cancelling i	f correct fra	iction seei	า		
	eg $\frac{65}{100} = \frac{6}{10}$ scores B1 for initial con			ect fractio	n		
	$\frac{6.5}{10}$ only						В0

Q		Answer		Mark		Comments	
	Tallies corre	ct including 5 ba	ar gate	B1	correct tallies f	or 8, 5, 5, 2	
	Frequencies	correct		B1ft	ft their tallies if	given	
			Ad	ditional G	Guidance		
	Correct table						
		Value	Та	ally	Frequency		
		1–3	¥	111	8		
		4–6	ł	H	5		
		7–9	ł	H	5		
6		10–12			2		
	Frequencies i	in tally column if	no tallies	seen			B0B1
	Relative frequ	uencies in freque	ency colum	n with free	quencies is choic	е	
	eyı	Value	Τa	ally	Frequency		
		1–3	¥	111	8 $\frac{8}{20}$		
		4–6	\rightarrow	H	5 $\frac{5}{20}$		
		7–9	ł	H	5 $\frac{5}{20}$		B1B0ft
		10–12			$2\frac{2}{20}$		

Q	Answer	Mark	Comments	
	$8 \times 9 \text{ or } 72$ or $5 \times 3 \text{ or } 15$ or $8 \times 6 \text{ or } 48$ or $13 \times 3 \text{ or } 39$ or $13 \times 9 \text{ or } 117$ or $6 \times 5 \text{ or } 30$ or $8 \times 3 \text{ or } 24$	M1	must not be seen as part of a multiplication string	long
7	$8 \times 9 + 5 \times 3 \text{ or } 72 + 15$ or $8 \times 6 + 13 \times 3 \text{ or } 48 + 39$ or $13 \times 9 - 6 \times 5 \text{ or } 117 - 30$ or $8 \times 6 + 8 \times 3 + 5 \times 3$ or $48 + 24 + 15$	M1dep		
	87	A1		
	Ac	Iditional G	Buidance	
	Ignore any units			
	Some of the values may come from ine eg $8 + 9 + 13 = 30$	correct wo	rking	МО

Q	Answer	Mark	Comments			
	Alternative method 1					
	30 (mins) + 30 (mins) + 2 (hrs) or 3 (hours) or 180 (mins)	M1	oe			
	their 3 × 15.75 or 47.25	M1	oe their 3 must be [2, 5] must convert their mins to hrs			
	their 47.25 + 32 or 79.25 or 80 – their 47.25 or 32.75	M1dep	dep on previous M1			
8 (a)	79.25 and Yes or 32.75 and Yes or She has 75p left	A1	oe			
	Alternative method 2					
	30 (mins) + 30 (mins) + 2 (hrs) or 3 (hours) or 180 (mins)	M1	oe			
	their 3 × 15.75 or 47.25	M1	oe their 3 must be [2, 5] must convert their mins to hrs			
	80 – 32 or 48	M1				
	47.25 and 48 and Yes or She has 75p left	A1	oe			

	Alternative method 3				
	30 (mins) + 30 (mins) + 2 (hrs)		ое		
	or				
	3 (hours)	M1			
	or				
	180 (mins)				
	80 – 32 or 48	M1			
	their 48 ÷ 15.75 or 3.04 or 3.05	M1dep	dep on previous M1		
8 (a)	3 (hours) and 3.04… or 3.05 and Yes	A1	oe		
Cont'd	Alternative method 4				
	30 (mins) + 30 (mins) + 2 (hrs)		oe		
	or				
	3 (hours)	M1			
	or				
	180 (mins)				
	80 – 32 or 48	M1			
	their 48 ÷ their 3 or (£)16	M1dep	dep on M2		
	3 (hours) and (£)16 and Yes	A1			

	Additional Guidance			
	Ignore further working to calculate amount left if correct total and decision given			
	For build-up methods to 47.25 accept rounding of 7.875 to 7.87 or 7.88			
	eg Set up = 30mins = 0.5hr, 0.5 × 15.75 = 7.875			
	Party = 2hrs, 2 × 15.75 = 31.5			
	Tidy up = 30mins = 0.5hr, 0.5 × 15.75 = 7.875			
	Cost = 7.875 + 31.5 + 7.87 = 47.25	M1M1		
	Embedded 32 must be used accurately			
8 (a)	eg1			
Cont'd	$3 \times 15.75 = 47.25$	M1 M1		
	15.75 + 32 = 47.75	MO		
	47.25 + 47.75 = 95	A0		
	eg2			
	30mins + 30mins = 1hr, 1 × 15.75 = 15.75			
	Party = 3hrs, 3 × 15.75 = 47.25	M0M1		
	47.25 + 15.75 + 32 = 95	M1A0		
	eg3			
	15.75 + 32 = 47.75			
	3 × 47.75 = 143.25	MITMITMUAU		

Q	Answer	Mark	Comments			
	Alternative method 1					
	30 × 3 ÷ 8 or 11.2(5) or 11.3	M2	oe accept 11 remainder 2 M1 3 ÷ 8 or 0.375 or 30 ÷ 8 or 3.75 or 3 × 30 or 90			
	12	A1				
	Alternative method 2					
	3 × 30 or 90	M1				
8(b)	11 × 8 or 88 or 12 × 8 or 96	M1	oe eg may list multiples of 8 up to at least 88			
	12	A1				
	Alternative method 3					
	3 pizzas for 8 people	M1				
	3×4 pizzas for 8×4 people	M1	oe 8×4 (or 32) must be for people not slices			
	12	A1				
	Alternative method 4					
	8 ÷ 3 or $2\frac{2}{3}$ or [2.6, 2.7]	M1	may be implied by 1 pizza feeds 2 people with 2 slices left			
	$30 \div \text{their } 2\frac{2}{3} \text{ or } [11.1, 11.54]$	M1dep	oe their $2\frac{2}{3}$ must be [2.6, 2.7]			
	12	A1				

Additional Guidance continues on next page

8(b) Cont'd	Additional Guidance	
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even amongst multiple attempts.	
	Working may be seen on diagrams	
	Ignore comments about number of slices left if 12 seen	

Q	Answer	Mark	Comments		
	Alternative method 1				
	280 × 30 or 8400	M1			
	2 × 1000 × (1 + 4) or 10000		oe		
			M1		
			2 × 1000 or 2000		
		M2	or		
			2 × 4 × 1000 or 8000		
			or		
			2 × (1 + 4) or 10		
	8400 and 10 000 and Yes	A1			
8 (C)	Alternative method 2				
	280 ÷ 1000 × 30 ÷ (1 + 4) or 1.68(0)		M2 for any two correct operations		
			eg implied by 8.4 or 0.056 or 1680 or 0.006		
			or		
		M3	0.28 and 6 or 8400 and 5000 or 56 and 0.03		
			M1 for one correct operation		
			eg 0.28, 6, 8400, 5000, 56, 0.03		
	1.68(0) and Yes		allow 1.6 from correct method		
	or	A1			
	0.32 (litres) left				

	Alternative method 3		
	2 × (1 + 4) or 10	M1	oe
	280 × 30 ÷ 1000 or 8.4 or their 10 ÷ 30 or 0.33(3) and 280 ÷ 1000 or 0.28(0)	M2	M1 280 × 30 or 8400 or 280 ÷ 1000 or 0.28(0) or their 10 ÷ 30 or 0.33(3)
	10 and 8.4 and Yes or 0.33(3…) and 0.28(0) and Yes	A1	oe eg 8 litres 400 ml
	Alternative method 4		
8 (c) cont'd	2 × 1000 × (1 + 4) or 10 000	M2	oe M1 2 × 1000 or 2000 or 2 × 4 × 1000 or 8000 or 2 × (1 + 4) or 10
	their 10000 ÷ 30 or 333.() or their 10000 ÷ 280 or 35.()	M1	their 10 000 must not be 280
	333.(…) and Yes or 35.(…) and Yes	A1	
	Alternative method 5		
	280 ÷ (1 + 4) or 56	M1	
	2 × 1000 or 2000	M1	
	their 2000 ÷ their 56 or 35.()	M1	ое
	35.(…) and Yes	A1	

	Alternative method 6			
	280 × 30 or 8400			
	or	M1		
	280 ÷ (1 + 4) or 56			
	their 8400 ÷ (1 + 4)			
	or			
	their 56 × 30	M1dep		
	or			
	1680			
8 (c)	2 × 1000 or 2000			
Cont'd	or	M1		
	their 1680 ÷ 1000 or 1.68(0)			
	1680 and 2000 and Yes		allow 1.6 from correct method	l
	or			
	1.68(0) and Yes	A1		
	320 (mi) leπ			
	Ad	ditional G	buidance	I
	Ignore any further working once answer seen. Check for decision.			
	Note $280 \div 2 = 140, 140 \div 4 = 35$			M0M0M0A0

Q	Answer	Mark	Comments			
	Alternative method 1	Alternative method 1				
	5.4 × 0.15 or 0.81	M1	oe may work in grams throughout			
	5.4 + their 0.81 or 6.21 or 6.1 – their 0.81 or 5.29	M1dep	5.4 × 1.15 is M2			
	6.21 and No or 5.29 and No	A1	accept 6210 or 5290 if working in grams			
	Alternative method 2					
	5.4 × 0.15 or 0.81	M1	oe may work in grams throughout			
	6.1 – 5.4 or 0.7	M1				
9 (a)	0.81 and 0.7 and No	A1	accept 810 and 700 if working in grams			
	Alternative method 3					
	6.1 – 5.4 or 0.7	M1	may work in grams throughout			
	their 0.7 ÷ 5.4 × 100 or 12.9()	M1dep	must be consistent units			
	12.9() and No	A1	allow 13 with correct method			
	Alternative method 4					
	1.15 seen	M1				
	6.1 ÷ 1.15 or 5.3(0)	M1dep				
	5.3(0…) and No	A1				
	4	Additional G	uidance			
	Up to M1 may be awarded for correct answer, even amongst multiple atter	ct work with r npts.	no answer, or incorrect			

Q	Answer	Mark	Comments	
	Alternative method 1 (bar chart or vertical line graph)			
	Chooses bar chart or vertical line graph	B1	at least one bar or one vertical line must be seen	
	Frequency axis has linear scale starting from zero up to at least 10		for bar chart the frequency may be on the horizontal or vertical axis	
		B1	condone zero not labelled	
			labelling/notches for values must be at the top of each square	
	All heights correct for their increasing		ft their scale	
9 (b)	scale		±½ square	
	or heights in correct proportion if no scale is given	B1ft	for labelling in the middle of squares count the 'blocks'	
			eg heights 10 cm, 6 cm and 4 cm	
	Fully correct labelling for their type of		ое	
	graph			
	Number of Pets on frequency axis			
	and			
	Pet labels on the other axis or on the bars	B1	allow abbreviations	
	and			
	equal width bars and equal gaps or		condone different gap between axis and	
	no gaps between them	first bar		

	Alternative method 2 (pictogram)				
	Chooses pictogram	B1			
	Suitable key with icon and scale	B1	a suitable key is one that can equally into 4, 6 and 10	be split	
	Fully correct pictogram with all rows correct and equal spaces between rows and icons	B2ft	ft their key mark broad intention to align i B1ft at least one row drawn co	cons prrectly for	
			their key		
	Alternative method 3 (pie chart)				
	Chooses pie chart	B1			
	$\frac{10}{20} \times 360$		oe correct method shown for	one angle	
	or	M1	implied by one correct angle s	een or drawn	
	10 × 18				
9 (b) Cont'd	All 3 sectors drawn to correct size 180, 108 and 72	A1	± 2°		
	3 sectors drawn and labelled in correct order of size	B1			
	Additional Guidance				
	Accept D, C, R for the labels but not 10), 6, 4			
	Label for Type of Pet is not required or	the axis			
	If bars are labelled for the wrong type of pet, award heights mark if all three correct heights are seen but do not award label mark				
	In Alt 1 , heights may be plotted with crosses. If the crosses are at the top of vertical lines, then the mark for suitable diagram can be awarded. However, if heights are plotted with crosses but have no lines, or are joined together, then all marks except the B1 for suitable diagram can be accessed. Gaps between the crosses must be equal.				
	For a pie chart the correct angles are 1 Rabbit	80° for Do	og, 108° for Cat and 72° for		
	Labelling mark can be awarded for any pie chart with 3 sectors only, in order of size labelled Dog, Cat and Rabbit				
	The scale on the frequency axis must be linear throughout its length				

Q	Answer	Mark	Comments
9 (c)	$45 \times 30 \times 40$ or 54000	M1	
	their 54 000 ÷ 1000 or 54	M1	their 54 000 must come from a combination of the tank lengths
	their 54 × 2	M1dep	dep on previous M1
	108	A1	
	Additional Guidance		
	Ignore units in working		

Q	Answer	Mark	Comments		
10(a)	$\frac{168}{9.6(0)}$ ÷ 7	M2	oe fully correct method answer 2 hrs 30 mins implies M1 $9.6(0) \times 7$ or $67.2(0)$ or $168 \div 9.6(0)$ or 17.5 or $168 \div 7$ or 24	M2	
	2.5(0)	A1	ignore attempted conversion t format if 2.5 seen	to another	
	Additional Guidance				
	eg 9.6 × 2 = 19.2, 19.2 × 7 = 134.4, 4.8 × 7 = 33.6 134.4 + 33.6 = 168, so 2 hrs 30mins			M2A0	
	eg1 168 \div 7 = 24 9.60 \times 2 = 19.2 and 9.60 \div 2 = 4.8 19.2 + 4.8 = 24, so 2 hrs 30 mins			M2A0	
	eg2 168 ÷ 7 = 24 24 ÷ 9.6 = 2.5 so 2.30 eg3			M2A0	
	168 ÷ 7 = 24 24 ÷ 9.6 = 2hrs 5mins			M2A0	

Q	Answer	Mark	Comments	
	3.8(0) ÷ 2 or 1.9(0) or 3.8(0) × 1.5 or 5.7(0)	M1	oe	
	2.99 + 2.25 + 3.8(0) + their 1.9(0) or 10.94	M1	oe their 1.9(0) must be less than not 2.99 or 2.25	3.8(0) and
	20 – their 10.94	M1	their 10.94 must be the sum of four item	
10 (b)	9.06	A1	condone 9.06p, 9:06 and 09.0 SC2 7.16 or 12.86 SC1 12.84 or 7.14	06
	Additional Guidance			
	2.99 + 2.25 + 3.80 + 3.80 = 12.84 20 - 12.84 = 7.16			SC2
	2.99 + 2.25 + 3.80 + 3.80 = 12.84			SC1
	$2.99 + 2.25 + (3.80 \div 2) = 7.14$ 20 - 7.14 = 12.86			SC2
	2.99 + 2.25 + (3.80 ÷ 2) = 7.14			SC1

Q	Answer	Mark	Comments		
10 (c)	Alternative method 1				
	45 + 64 + 74 + 41 + 83 + 120 + 77 or 504	M1			
	their 504 ÷ 7 or 72	M1	their 504 must be from sum of 7 numbers		
	72 and No	A1	SC1 438		

	Alternative method 2			
	45 + 64 + 74 + 41 + 83 + 120 + 77 or 504	M1		
	75 × 7 or 525	M1		
	504 and 525 and No	A1	SC1 438	
	Alternative method 3			
	differences below –30, –11, –1 and –34		condone one error for differen	ices below
	or			
	-76 (total of differences below)	M1		
	or			
	differences above 8, 45 and 2			
10 (c)	or			
	55 (total of differences above)			
Cont'd	their (-30) + their (-11) + their (-1) + their 8 + their 45 + their 2			
	or			
	their $-76 +$ their 55 or -21			
	or	M1dep		
	sum of the differences above (8, 45 and 2) and sum of the differences below (–30, –11, –1 and –34)			
	or			
	–76 and 55			
	(–)21 and No			
	or	A1		
	–76 and 55 and No			
	Ad	ditional G	buidance	
	eg 45 + 64 + 74 + 41 + 83 + 120 + 77	÷7 unless	s recovered	M1M0A0

Q	Answer	Mark	Comments		
	Fully correct net of cube with sides 4 squares in length		B2 six squares with sides 4 so length all attached but would r cube	quares in not form a	
			or		
		B3	B2 five squares with sides 4 s length that would form an ope	quares in n box	
			B1 at least five squares with sides 4 squares in length but would not form an open box		
11 (a)			condone gaps between the so	uares for B1	
	Additional Guidance				
	Ignore any tabs drawn				
	Internal sides of squares may be omitted				
	Mark intention				
	The five or six squares include the given one				

Q	Answer	Mark	Comments	
	Alternative method 1			
	5 × 3.15 or 15.75			
	or			
	4 × 10.75 or 43	M1		
	or			
	2 × 15.45 or 30.9(0)			
	5 × 3.15 + 4 × 10.75 + 2 × 15.45			
	or			
11 (b)	15.75 + 43 + 30.9(0)	M1dep		
	or			
	89.65			
	0.2(0) × (5 + 4 + 2) or 2.2(0)	N44	ое	
		IVI I	implied by 3.7(0) or 91.85	
	their 89.65 + their 2.2(0) + 1.5(0)	M1	their 91.85 must include 5 small and/or 4 medium and/or 2 large boxes	
			their 2.2(0) must be from 0.2(0) × [3, 11]	
	93.35	A1		

	Alternative method 2			
	3.15 + 0.2(0) or 3.35			
	or	M1		
	10.75 + 0.2(0) or 10.95			
	or			
	15.45 + 0.2(0) or 15.65			
	5 × (3.15 + 0.2(0)) or 16.75			
11 (b) Cont'd	or	M1dep		
	4 × (10.75 + 0.2(0)) or 43.8(0)			
	or			
	2 × (15.45 + 0.2(0)) or 31.3(0)			
	$5 \times (3.15 + 0.2(0)) + 4 \times (10.75 + 0.2(0)) + 2 \times (15.45 + 0.2(0))$			
	or	M1dep		
	16.75 + 43.8(0) + 31.3(0)			
	or			
	91.85			
	their 91.85 + 1.5(0)	M1	their 91.85 must include 5 small and/or 4 medium and/or 2 large boxes	
	93.35	A1		

Additional Guidance continues on next page

	Additional Guidance	
	Equivalent methods may be seen	
	eg	
	$5 \times 3.15 + 1 = 9.15$	
	$4 \times 10.75 + 0.8 = 43.8$	
	$2 \times 15.45 + 0.4 = 31.3$	
	9.15 + 43.8 + 31.3 = 84.25	M1M1
	84.25 + 1.5 = 85.75	M1M1A0
	(loss of accuracy mark due to arithmetic error)	
	Do not condone addition of multiple 1.5(0)	
11 (b)	eg1	
Cont'd	$5 \times 3.15 = 15.75$	
	$4 \times 10.75 = 43$	
	$2 \times 15.45 = 30.9$	
	15.75 + 43 + 30.9 = 89.65	M1M1
	$(0.2 + 1.50) \times (5 + 4 + 2) = 18.70$	M1M0
	89.65 + 18.70 = 108.35	A0
	eg2	
	15.75 + 20p + 20p + 20p + 20p + 20p + 1.50 = 18.25	
	43 + 20p + 20p + 20p + 20p + 1.50 = 45.30	M1M1
	30.90 + 20p + 20p + 1.50 = 32.80	M1M0A0
	18.25 + 45.30 + 32.80 = 96.35	

Q	Answer	Mark	Comments	
	Alternative method 1			
	360 – 60 – 90 or 210	M1	may be seen on diagram	
	16 200 ÷ 360 or 45	M1	ое	
	their 210 \times their 45 or 9450	M1dep	oe dep on M2	
	9450 and No	A1		
	Alternative method 2			
	16 200 ÷ 4 or 4050		ое	
	or	M1		
	16200 ÷ 6 or 2700			
11 (c)	16 200 ÷ 4 or 4050		oe	
	and	M1	implied by 6750	
	16200 ÷ 6 or 2700			
	16200 – their 4050 – their 2700 or	Midon	oe	
	9450	мтаер	dep on M2	
	9450 and No	A1		
	Alternative method 3			
	360 – 60 – 90 or 210		ое	
			may be seen on diagram	
	their 210 ÷ 360 or 0.58(3)	M1	ое	
	their 210 ÷ 360 × 16200	M1dep	oe	
	or 9450		dep on M2	
	9450 and No	A1		

	Alternative method 4			
	Alternative method 4			
	360 - 60 - 90 or 210	M1	may be seen on diagram	
	10000 ÷ 16200 or 0.61(7)	M1	oe	
	their 0.61(7) × 360 or 222.(2)	M1dep	oe dep on previous M1	
	240 and 222 (2) and No.	A 1		
	210 and 222.(2) and No	AI		
	Alternative method 5			
	360 - 60 - 90 or 210	M1	may be seen on diagram	
	their 210 ÷ 360 or 0.58(3)	M1dep	oe	
	10 000 ÷ 16 200 or 0.61(7)	M1	oe	
	0.58(3…) and 0.61(7…) and No	A1	ое	
11 (c)	Alternative method 6			
Cont'd	16200 ÷ 12 or 1350		ое	
	or	M1		
	16 200 ÷ 4 or 4050			
	16200 ÷ 12 or 1350		oe eg 16200 ÷ 2	
	and			
	16200 ÷ 4 × 2 or 8100			
	or	M1		
	16 200 ÷ 12 or 1350			
	and $16200 \div 4 \text{ or } 4050$			
	their 8100 + their 1350		oe den en M2	
	UI their $4050 \pm \text{their } 4050 \pm \text{their } 1250$	M1den	uep un mz	
	$\frac{1}{100} + \frac{1}{100} + \frac{1}$	widep		
	9450			
	9450 and No	A1		

Q	Answer	Mark	Comments	
	Alternative method 1			
	295 × 0.05 or 14.75	M1	oe	
	295 + their 14.75 or 309.75	M1dep	295 × 1.05 is M2	
	their 309.75 – 269	M1	their 309.75 must be > 295	
11 (d)	40.75	A1		
	Alternative method 2			
	295 × 0.05 or 14.75	M1	oe	
	295 – 269 or 26	M1		
	their 26 + their 14.75	M1dep	dep on M2	
	40.75	A1		