

| Please write clearly ir | า block capitals.              |   |
|-------------------------|--------------------------------|---|
| Centre number           | Candidate number               |   |
| Surname                 |                                |   |
| Forename(s)             |                                |   |
| Candidate signature     | I declare this is my own work. | / |

# A-level **BIOLOGY**

Paper 1

Wednesday 7 June 2023

Afternoon

Time allowed: 2 hours

#### **Materials**

For this paper you must have:

- · a ruler with millimetre measurements
- a scientific calculator.

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91.

| For Examiner's Use |      |  |  |
|--------------------|------|--|--|
| Question           | Mark |  |  |
| 1                  |      |  |  |
| 2                  |      |  |  |
| 3                  |      |  |  |
| 4                  |      |  |  |
| 5                  |      |  |  |
| 6                  |      |  |  |
| 7                  |      |  |  |
| 8                  |      |  |  |
| 9                  |      |  |  |
| 10                 |      |  |  |
| TOTAL              |      |  |  |

|       | Answer all questions in the spaces provided.                                                                                                               | Do<br>ou |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0 1.1 | Give the <b>three</b> structural features found in <b>all</b> virus particles <b>and</b> describe the function of <b>one</b> of these features.  [2 marks] |          |
|       | 1                                                                                                                                                          |          |
|       | 2                                                                                                                                                          |          |
|       | 3                                                                                                                                                          |          |
|       | Function of <b>one</b> named feature                                                                                                                       |          |
|       |                                                                                                                                                            |          |
| 0 1.2 | Explain why viruses are described as acellular and non-living.  [2 marks]                                                                                  |          |
|       |                                                                                                                                                            |          |
|       |                                                                                                                                                            |          |
|       |                                                                                                                                                            |          |
| 0 1.3 | Give <b>one</b> reason why antibiotics are <b>not</b> effective against viruses.  [1 mark]                                                                 |          |
|       |                                                                                                                                                            |          |
|       |                                                                                                                                                            |          |
|       |                                                                                                                                                            |          |
|       |                                                                                                                                                            |          |



0 2 . 1

Chitin is a polysaccharide. The chitin monomer is a  $\beta$ -glucose molecule with one OH group replaced by an NHCOCH<sub>3</sub> group. NHCOCH<sub>3</sub> can be represented by N(Ac).

Figure 1 shows the monomer that forms chitin and the chitin polymer.

Figure 1

Chitin has a similar structure to cellulose.

Use **Figure 1** to describe **three** ways the structure of chitin is similar to the structure of cellulose.

[3 marks]

| 1 |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
| 2 |  |  |  |
|   |  |  |  |
|   |  |  |  |
| 3 |  |  |  |
|   |  |  |  |
|   |  |  |  |

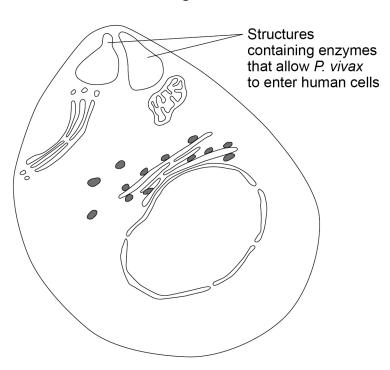
Question 2 continues on the next page



| 0 2.2   | Chitin keeps the tracheae open in the tracheal system of gas exchange in an insect.  Gas exchange does <b>not</b> occur in the tracheae. |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
|         | Explain the importance of <b>one</b> adaptation of the gas exchange surface in the tracheal system of an insect.                         |
|         | [2 marks]                                                                                                                                |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
| 0 2 . 3 | Lignin is a polymer found in the walls of xylem vessels in plants. Lignin keeps the xylem vessel open as a continuous tube.              |
|         | Explain the importance of the xylem being kept open as a continuous tube.  [3 marks]                                                     |
|         | [5 marks]                                                                                                                                |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |
|         |                                                                                                                                          |



Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED




0 3 . 1

The human disease, malaria, is caused by infection with a single-celled eukaryotic organism.

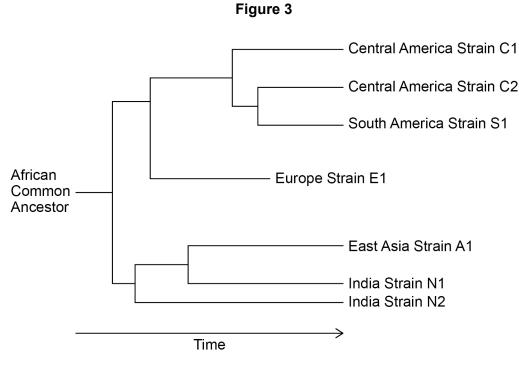
**Figure 2** shows a diagram of *Plasmodium vivax*, one of the species that can cause malaria.

Figure 2



Other than the Golgi apparatus, name **one** structure in **Figure 2** which shows that *P. vivax* is a eukaryote.

|                                                                            | [1 mark]  |
|----------------------------------------------------------------------------|-----------|
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
| Describe <b>two</b> functions of the Golgi apparatus in a eukaryotic cell. | [2 marks] |
| 1                                                                          |           |
| 1                                                                          |           |
|                                                                            |           |
|                                                                            |           |
| 2                                                                          |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |




0 3 . 2

*P. vivax* evolved from a common ancestor in Africa. As humans migrated around the world, new strains of *P. vivax* evolved.

*P. vivax* is now extremely rare in Africa but there are several different strains of *P. vivax* in other parts of the world.

Figure 3 shows a phylogenetic diagram of the evolution of these different strains.



Time

Time

What does Figure 3 suggest is the order of human migration out of Africa?

Tick (✓) one box.

[1 mark]

Europe, India, East Asia, Central America, South America

India, East Asia, Europe, South America, Central America

India, Europe, East Asia, Central America, South America

South America, Central America, East Asia, Europe, India

Question 3 continues on the next page

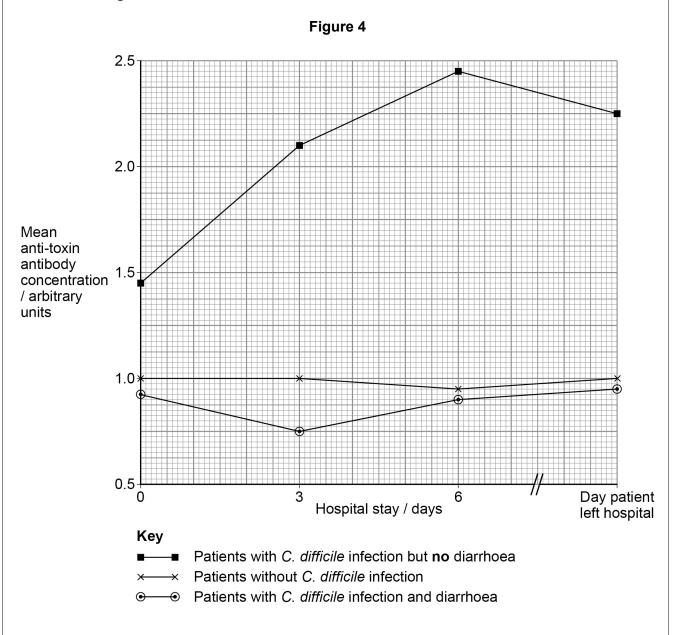


| 0 3.4 | There are an estimated 229 million cases of human malaria worldwide per year. 94% of these cases are found in Africa, but are not caused by <i>P. vivax</i> . <i>P. vivax</i> does cause 61% of the cases of human malaria outside Africa. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Use this information to calculate the number of cases worldwide caused by <i>P. vivax</i> each year.                                                                                                                                       |
|       | [1 mark]                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       | Answer cases of malaria                                                                                                                                                                                                                    |
| 0 3.5 | In Africa today, most of the human population are resistant to malaria caused by <i>P. vivax</i> .                                                                                                                                         |
|       | Use your knowledge of natural selection to explain why this resistance is so common in Africa.                                                                                                                                             |
|       | [4 marks]                                                                                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                            |



| 0 4 . 1 | Some hospital patients suffer from diarrhoea caused by infection with the bacterium <i>Clostridium difficile</i> . The <i>C. difficile</i> bacteria release toxins. These toxins cause the diarrhoea.  The toxins damage the cells lining the ileum, causing them to lose their microvilli. The damage to the cells reduces the absorption of the products of digestion and reduces the absorption of water, resulting in diarrhoea.  Explain why the damage to the cells lining the ileum reduces absorption of the products of digestion and why this reduces absorption of water. |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         | Question 4 continues on the next page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |




Not all patients in hospital with *C. difficile* develop diarrhoea.

Scientists measured the anti-toxin antibody concentration in hospital patients with and without *C. difficile* infection.

They measured the anti-toxin antibody concentration four times:

- on admission to hospital (day 0)
- on day 3
- on day 6
- on the day the patient left the hospital.

Figure 4 shows the scientists' results.





Do not write outside the

|         | Describe how the anti-toxin antibody would be digested.  [3 marks]                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0 4 . 3 | To be used as passive immunity treatment, the anti-toxin antibody would be injected. If it was given by mouth, it would be digested.      |
|         |                                                                                                                                           |
|         |                                                                                                                                           |
|         |                                                                                                                                           |
|         |                                                                                                                                           |
|         |                                                                                                                                           |
|         |                                                                                                                                           |
|         | [3 marks]                                                                                                                                 |
|         | Use <b>Figure 4</b> to suggest how this passive immunity would work <b>and</b> which patients should be offered this anti-toxin antibody. |



| 0 5   | A student investigated the use of cinnamon oil as an antimicrobial substance.<br>She investigated the effect of cinnamon oil on the growth of five different bacterial cultures grown on agar plates. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 5.1 | The student added 100 mm <sup>3</sup> of each bacterial culture from its glass bottle onto a separate agar plate. She spread each bacterial culture evenly over the agar using a spreader.            |
|       | Describe the aseptic techniques she should use.  [3 marks]                                                                                                                                            |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                       |



| 0 5. | 2   | On each agar plate, the student cut a well (a hole) in the agar. |
|------|-----|------------------------------------------------------------------|
|      | ' 🗀 | • · · · · · · · · · · · · · · · · · · ·                          |

The well had a diameter of 6 mm. The student added 50 mm<sup>3</sup> of cinnamon oil into the well.

Calculate the minimum depth of the well to allow the addition of 50 mm<sup>3</sup> of cinnamon oil.

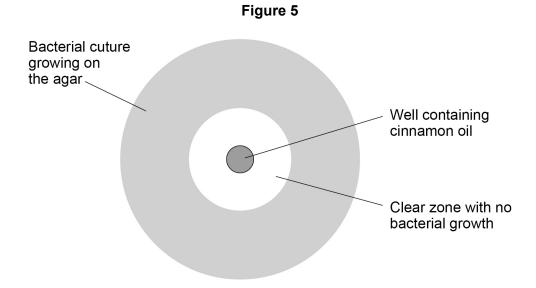
Use the following equation in your calculation:

Volume of a cylinder =  $\pi r^2 \times I$ 

Use 3.14 as the value for  $\pi$ .

Show your working.

[2 marks]


| Answer | mn |
|--------|----|

Question 5 continues on the next page



The student kept the plates at 25 °C for 24 hours.

Figure 5 shows what one of her plates looked like after 24 hours.



The student measured the diameter of the clear zone with no bacterial growth around each well. She made these measurements to the nearest whole mm

Table 1 shows her results.

Table 1

|                                     | Diameter of clear zone / mm |                  |                     |  |
|-------------------------------------|-----------------------------|------------------|---------------------|--|
| Bacterial culture                   | Cinnamon oil                | Positive control | Negative<br>control |  |
| Bacillus spp.                       | 15                          | 14               | 0                   |  |
| Staphylococcus aureus               | 20                          | 17               | 0                   |  |
| Listeria monocytogenes              | 18                          | 12               | 0                   |  |
| Escherichia coli                    | 16                          | 12               | 0                   |  |
| Klebsiella spp.                     | 14                          | 12               | 0                   |  |
| Median for all cultures             |                             |                  | 0                   |  |
| Mean for all cultures               |                             |                  | 0                   |  |
| Standard deviation for all cultures | 2.4                         | 2.2              | 0                   |  |

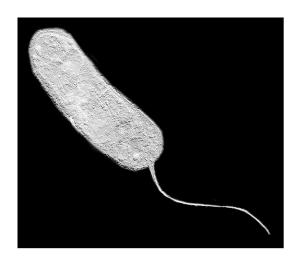


Do not write outside the

| 0 5 . 3 | Suggest exactly what the student added to the wells to get the positive control <b>and</b> negative control results.              | box |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|         | [2 marks]                                                                                                                         |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
| 0 5.4   | Complete <b>Table 1</b> to show the median and mean diameters.                                                                    |     |
|         | [1 mark]                                                                                                                          |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
| 0 5 . 5 | The mean ± 2 standard deviations includes over 95% of the data.                                                                   |     |
| 0 5 . 5 |                                                                                                                                   |     |
|         | Use this information to consider whether the standard deviations suggest the differences in means are likely to be due to chance. |     |
|         | Explain your answer, including at least <b>one</b> calculation.                                                                   |     |
|         | [2 marks]                                                                                                                         |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   |     |
|         |                                                                                                                                   | 10  |
|         |                                                                                                                                   |     |
|         | Turn over for the next question                                                                                                   |     |
|         |                                                                                                                                   |     |



Do not write outside the box


| 0 6.1 | Define genome and proteome.  [2 marks]                                                                                                                                                                                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Genome                                                                                                                                                                                                                                                                                                                                            |
|       | Proteome                                                                                                                                                                                                                                                                                                                                          |
|       | The classification system used in the early 20th century grouped different species of bacteria according to the position and shape of flagella on bacterial cells and by the number of flagella per cell. These were observed using an optical microscope. Each species of bacterium has a characteristic cell shape and arrangement of flagella. |
| 0 6.2 | These characteristics may be shared with other species within a genus. Flagella are fragile, difficult to stain and may extend from the cell at any angle.  Consider the accuracy and limitations of the early classification of bacteria using the arrangement of flagella.                                                                      |
|       | [3 marks]                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                   |



| 0 6.3 | Suggest why several bacterial species have been renamed in recent years. | [1 mark] |
|-------|--------------------------------------------------------------------------|----------|
|       |                                                                          |          |

0 6. 4 Figure 6 shows an image from an optical microscope of a single bacterial cell.

Figure 6



This bacterial cell is 2.3 µm long (excluding the flagellum).

Calculate the magnification of this image.

Show your working.

[2 marks]

Magnification ×

Turn over for the next question



| 0 | 7 | 1 |
|---|---|---|

Carbon monoxide (CO) is released during incomplete combustion of fossil fuels.

Figure 7 shows the dissociation curve for oxyhaemoglobin when:

not exposed to CO

Explain your answer.

 exposed to CO such that 50% of the oxygen binding sites are occupied by CO (50% COHb).

Percentage saturation with O<sub>2</sub>

Figure 7

No CO

No CO

T5
Percentage saturation with O<sub>2</sub>

15

pO<sub>2</sub> / kPa

Using **Figure 7**, what can you conclude about how exposure to CO affects the loading and unloading of oxygen by haemoglobin?

| [3 marks] |
|-----------|
|           |
|           |
| <br>      |
|           |
|           |
|           |
|           |
|           |
|           |
| <br>      |
|           |
|           |
|           |



Do not write outside the

| 0 7 . 2 | 2 |
|---------|---|
|---------|---|

The World Health Organisation (WHO) suggests that to avoid long-term health effects, COHb concentrations should be kept below 2.5%.

WHO recommends that people should not be exposed to:

- air with > 10 mg m<sup>-3</sup> CO for more than 8 hours
   air with > 30 mg m<sup>-3</sup> CO for more than 1 hour.

Scientists have used a mathematical model to calculate the exposure to carbon monoxide that would result in 2.5% COHb in both adults and children.

Table 2 shows the scientists' results.

Table 2

| Exposure duration at rest / hours | CO concentration in the air / mg m <sup>-3</sup> resulting in 2.5% COHb |       |
|-----------------------------------|-------------------------------------------------------------------------|-------|
|                                   | Child                                                                   | Adult |
| 1                                 | 31.2                                                                    | 40.2  |
| 8                                 | 9.6                                                                     | 10.6  |

The scientists suggest that the WHO recommendations for carbon monoxide concentrations resulting in 2.5% COHb should be reduced.

| Evaluate the scientists' conclusion. | [3 marks] |
|--------------------------------------|-----------|
|                                      |           |
|                                      |           |
|                                      |           |
|                                      |           |
|                                      |           |
|                                      |           |
|                                      |           |
|                                      |           |

Turn over for the next question



Turn over ▶

6

| 0 | 8 |  | 1 |
|---|---|--|---|
|---|---|--|---|

Scientists investigated a drug called MiTMAB as a treatment for cancer. MiTMAB inhibits cytokinesis.

Figure 8 shows drawings of cancer cells seen with an optical microscope from a:

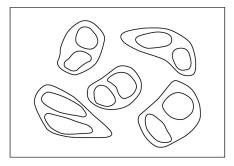

- sample treated with MiTMAB
- control sample.

Figure 8

Α



В



The cells in drawing **A** can be identified as those treated with MiTMAB.

| Explain why. | [2 marks] |
|--------------|-----------|
|              |           |
|              |           |
|              |           |
|              |           |
|              |           |
|              |           |



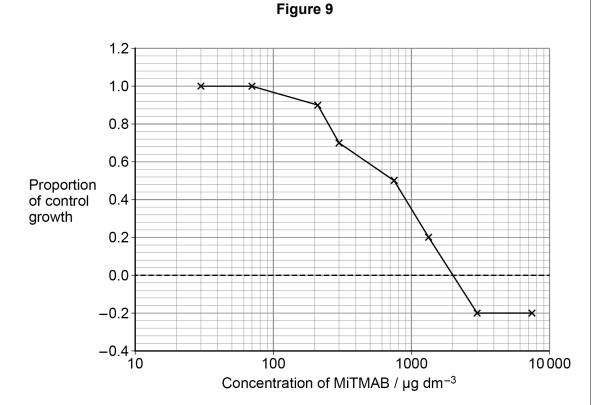
| 0 8.2 | MiTMAB acts as a non-competitive inhibitor of an enzyme called dynamin. |           |
|-------|-------------------------------------------------------------------------|-----------|
|       | Suggest how MiTMAB can cause dynamin to become inactive.                | [3 marks] |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       | Question 8 continues on the next page                                   |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |
|       |                                                                         |           |



When active, dynamin has **two** functions:

- it stimulates cytokinesis
- it inhibits cell death.

The scientists treated actively growing cultures of cancer cells with MiTMAB.


They incubated:

- one sample of 2500 cells without MiTMAB as a control
- eight samples, each with 2500 cells and a different concentration of MiTMAB.

After 72 hours, the scientists measured the number of cells in each sample.

Figure 9 shows the scientists' results.

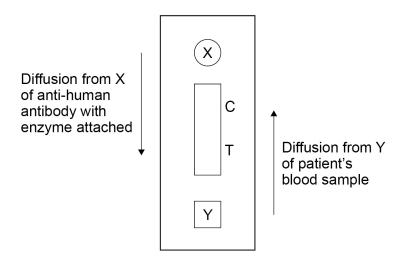
A negative value for proportion of control growth means that fewer than 2500 cells were counted after 72 hours.





Do not write outside the

| 0 8 . 3 | Use all the information given to explain the results shown in <b>Figure 9</b> .                                                        | [3 marks]     |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
| 0 8.4   | 0.01 dm <sup>3</sup> of MiTMAB solution was added to the treated cells.                                                                |               |
|         | Calculate the increase in mass of MiTMAB (in $\mu g$ ) added to the cells to regrowth from equal to the control to 0.0 of the control. | duce the cell |
|         | Show your working.                                                                                                                     | [2 marks]     |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        |               |
|         | Answer                                                                                                                                 | µg            |
|         |                                                                                                                                        |               |
|         | Turn over for the next question                                                                                                        |               |
|         |                                                                                                                                        |               |
|         |                                                                                                                                        | Turn over N   |


0 9

Dengue fever is a human disease caused by the dengue virus.

Scientists designed an ELISA test to detect antibodies to the dengue virus in a patient's blood sample.

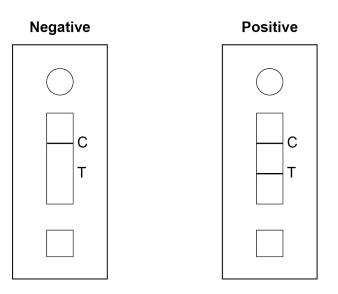

Figure 10 shows a diagram of this test and some information about how it works.

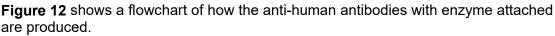
Figure 10

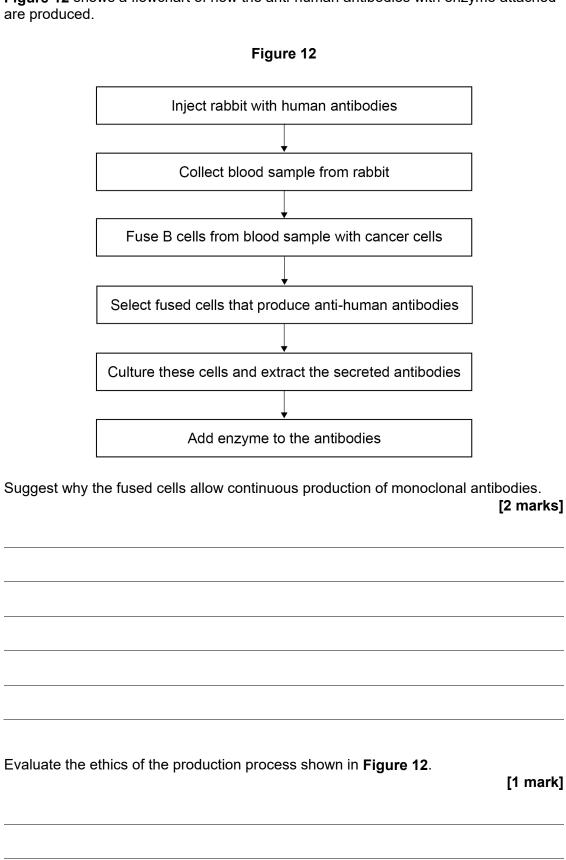


**Figure 11** shows the negative and positive results that were produced 20 minutes after the use of the test shown in **Figure 10**.

Figure 11







Do not write outside the box

| 0 9.1   | Suggest what is on the test at line <b>T</b> and explain what causes the line to appear in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|         | positive test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2 marks] |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
| 0 9 . 2 | A line at <b>C</b> shows that the test has worked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |
|         | Suggest <b>one</b> reason why a line at <b>C</b> shows the test has worked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |
|         | 30 this , and the same of the | [1 mark]  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         | Question 9 continues on the next nage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|         | Question 9 continues on the next page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |











0 9 .

Do not write outside the Question 9 continues on the next page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED



Early identification of dengue fever can be difficult as many other diseases produce the same symptoms. Early identification is important because people suffering with dengue fever can become ill very quickly and may need hospital treatment.

Scientists compared the effectiveness of three diagnostic tests for dengue fever.

- Laboratory-based test a patient's blood sample is sent from the doctor's clinic to a laboratory for testing.
- · Current test used in the doctor's clinic.
- New test to be used in the doctor's clinic the ELISA test shown in **Figures 10** and **11** (on page 24).

The scientists' results are shown in Table 3.

A blood sample from each patient with confirmed dengue fever at each time after onset of symptoms was tested with all three diagnostic tests.

Table 3

| Time after onset      | Number of confirmed dengue fever patients tested | Number of positive results |              |          |
|-----------------------|--------------------------------------------------|----------------------------|--------------|----------|
| of symptoms /<br>days |                                                  | Laboratory-<br>based test  | Current test | New test |
| 1–2                   | 14                                               | 10                         | 0            | 6        |
| 3–4                   | 38                                               | 28                         | 6            | 24       |
| 5–7                   | 18                                               | 8                          | 14           | 14       |



| 0 9 . 5 | The scientists recommend that the new test is used for the identification of dengue fever in all countries around the world. |      |
|---------|------------------------------------------------------------------------------------------------------------------------------|------|
|         | Discuss this recommendation. Use all the information given.  [3 mail]                                                        | rksl |
|         | Įo mai                                                                                                                       | KO]  |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              | _    |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
| 0 9 . 6 | The dengue virus causes damage to capillaries so that blood proteins move out of                                             | the  |
|         | capillaries into the tissue fluid.  Explain how this would affect the return of tissue fluid into the capillaries.           |      |
|         | [2 mai                                                                                                                       | rks] |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |
|         | Turn over for the next question                                                                                              |      |
|         |                                                                                                                              |      |
|         |                                                                                                                              |      |

2 9

Do not write outside the box

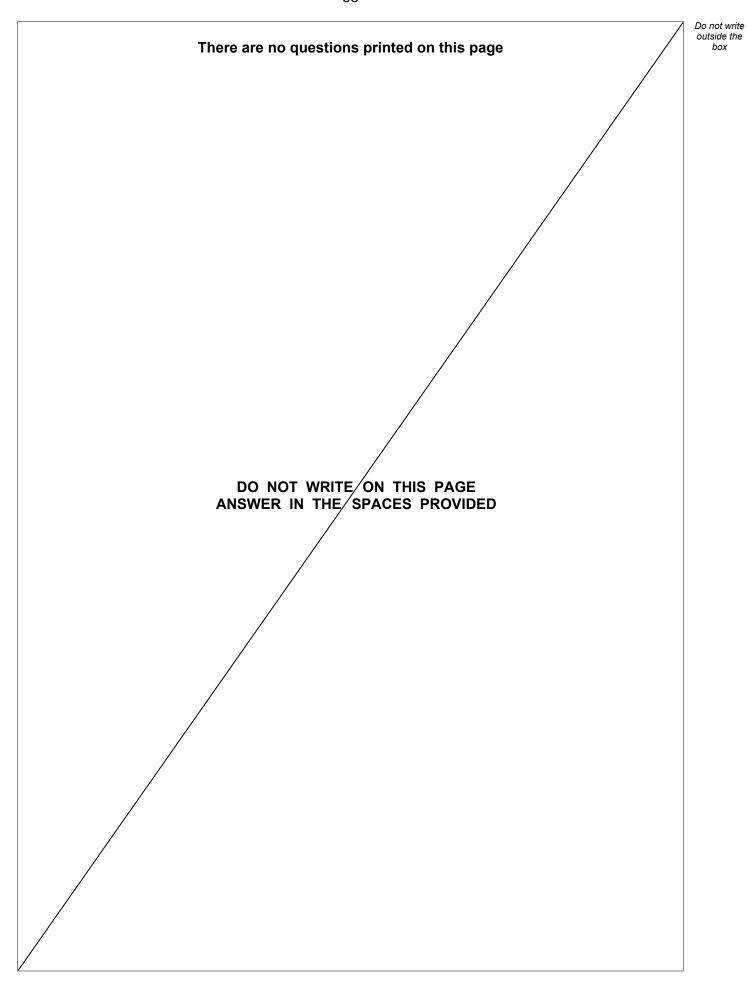
| 1   0  . 1 | Describe how a quaternary protein is formed from its monomers. |           |
|------------|----------------------------------------------------------------|-----------|
|            | Do not include the process of translation in your answer.      |           |
|            |                                                                | [5 marks] |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |
|            |                                                                |           |



Do not write outside the box

| 1 0 . 2 | Describe the structure of DNA and the structure of a chromosome. | [6 marks] |
|---------|------------------------------------------------------------------|-----------|
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  |           |
|         |                                                                  | _         |
|         | Question 10 continues on the next page                           |           |
|         |                                                                  |           |






| Mutation can result in an increase in genetic variation within a species.                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------|--|--|
| Describe and explain the <b>other</b> processes that result in increases in genetic variation within a species. |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |
|                                                                                                                 |  |  |

15

## **END OF QUESTIONS**







Additional page, if required.
Write the question numbers in the left-hand margin. Question number



Do not write outside the box

Additional page, if required.
Write the question numbers in the left-hand margin. Question number



Do not write outside the box

Additional page, if required. Write the question numbers in the left-hand margin. Question number Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright © 2023 AQA and its licensors. All rights reserved.





Do not write

outside the box