

Surname	
Forename(s)	
Centre Number	
Candidate Number	
Candidate Signature	
I declare this is my own work.	

AS

CHEMISTRY

Paper 2 Organic and Physical Chemistry 7404/2

Tuesday 23 May 2023 Morning

Time allowed: 1 hour 30 minutes

At the top of this page, write your surname and forename(s), your centre number, your candidate number and add your signature.

BLANK PAGE

MATERIALS

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

You are advised to spend about 65 minutes on SECTION A and 25 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

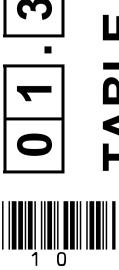
0 1

This question is about the analysis of organic compounds.

For each pair of compounds in Questions 01.1 and 01.2, give a reagent (or combination of reagents) that could be added separately to each compound in a single reaction to distinguish between them.

State what is observed in each case.

0 1.1 CH ₃ CH ₂ CH ₂ CHO and CH ₃ CH ₂ CH(OH)CH ₃
[3 marks]
Reagent(s)
Observation with CH ₃ CH ₂ CH ₂ CHO
Observation with CH ₃ CH ₂ CH(OH)CH ₃



BLANK PAGE

01.2
Cyclohexane and cyclohexene
[3 marks]
Reagent(s)
Observation with cyclohexane
Observation with cyclohexene

ives the precise relative molecular masses $(M_{
m r})$ of some organic compounds measured using high mass spectrometry. TABLE 1 gi resolution

TABLE 1

MOLECULAR FORMULA	C5H12	C5H10	C ₆ H ₆
Mr	72.1416	70.1260	to be calculated

lata to find the relative atomic masses (A_r) of hydrogen and carbon. Use these d

Give your answers to 4 decimal places, on pages 11 and 13

Use these calculated A_r values to find the relative

nswer to 4 decimal places, on page 13. molecular mass (M_r) of C₆H₆ Give your a

[3 marks]

A_r of hydrogen

BLANK PAG

00	T S	overl
car	S	
A _r or carbon	Mr of C ₆ H ₆	Turn
Y	S	Ē

Λ	2
U	

This question is about fuels.

02.1

Crude oil is separated into fractions by fractional distillation.

State the meaning of the term 'fraction' in this context. [1 mark]

Petrol for cars contains branched and cyclic alkanes produced by catalytic cracking.

Identify t	he catalyst	used in t	his process.
[1 mark]			

02.3

3-Ethyl-4-methylhexane is a branched alkane in petrol.

Draw the skeletal formula of this alkane. [1 mark]

02.4

Give the equation for the complete combustion of 3-ethyl-4-methylhexane.

Use the molecular formula for 3-ethyl-4-methylhexane in your equation. [2 marks]

0	2	5
U		J

Carbon dioxide is a product from the combustion of petrol in cars. Carbon dioxide acts as a greenhouse gas when it absorbs infrared radiation.

Give ONE reason why cark absorbs infrared radiation	

_		
0	2	6
U		U

Nitrogen monoxide (NO) is formed when petrol is burned in cars.

State ONE environmental problem that NO causes.

State what is used to remove NO from the exhaust gases formed in petrol-fuelled cars. [2 marks]

Environmental p	orobiem ₋	
Removal of NO		

0	2		7
		_	-

Petrol sold in the UK contains 10% bioethanol. Bioethanol is ethanol made from crops by fermentation and is considered to be carbon-neutral.

State what is meant by the term 'carbon-neutral'. [1 mark]						

BLANK PAGE

0 3

This question is about reactions of halogenoalkanes with hydroxide ions.

03.1

Outline the mechanism for the nucleophilic substitution reaction of 1-bromobutane with sodium hydroxide. [2 marks]

A student investigated the rate of nucleophilic substitution of halogenoalkanes with hydroxide ions.

Identical concentrations of 1-bromobutane and 1-iodobutane were reacted separately with sodium hydroxide solution under the same conditions.

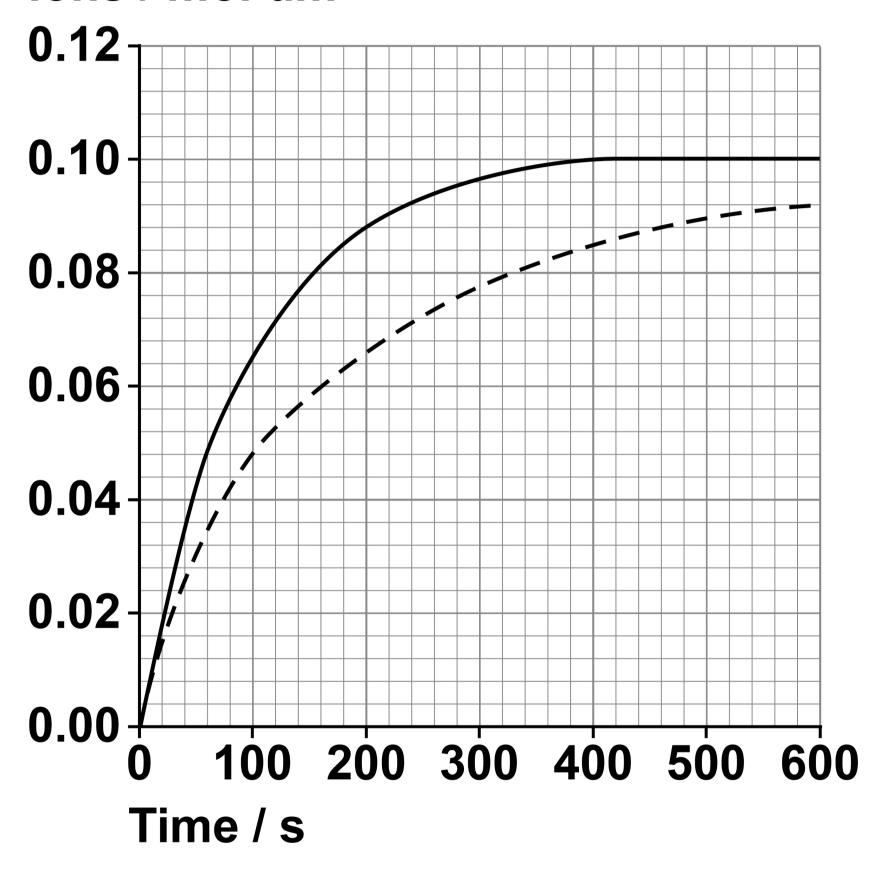

The concentration of halide ions was monitored during each experiment.

FIGURE 1, on page 24, shows the student's results.

FIGURE 1

Concentration of halide ions / mol dm⁻³

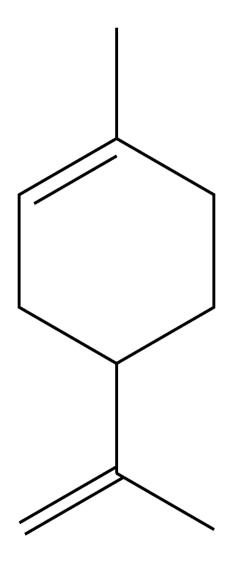
KEY

- —— Reaction with 1-iodobutane
- --- Reaction with 1-bromobutane

State how FIGURE 1 shows that the rate of reaction of 1-iodobutane is faster than the rate of reaction of 1-bromobutane.

State why the rates are different. [2 marks]					




0 4

1-Methylcyclohexene and limonene are cyclic alkenes with a citrus smell.

1-Methylcyclohexene is manufactured and used in the chemical industry.

Limonene is found naturally in orange peel.

1-methylcyclohexene

limonene

BLANK PAGE

1-Methylcyclohexene reacts with HBr to form two structural isomers.

The major product is

1-bromo-1-methylcyclohexane.

Name and outline the mechanism for the formation of this major product. [5 marks]

Name of mechanism

Outline of mechanism

0 4.2

Draw the skeletal formula of the minor product formed in the reaction in Question 04.1, on page 28.

Explain why the products are formed in different amounts. [4 marks]

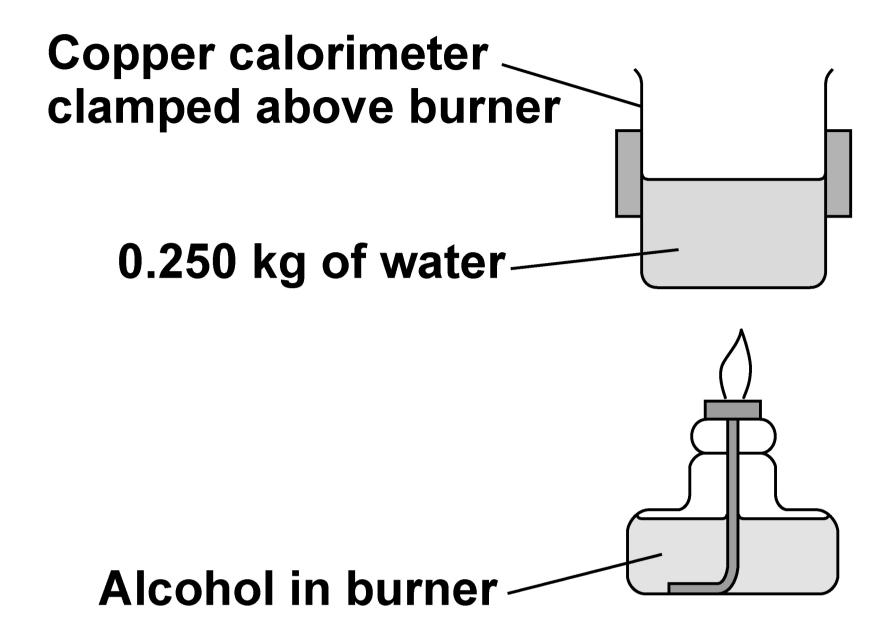
Skeletal formula

Explanation				

0 4.3

Draw the structure of the major product when an excess of HBr reacts with limonene. [1 mark]

0 5


A student is provided with a 0.0300 mol sample of an alcohol.

The student decides to identify the alcohol using an experiment to determine its enthalpy of combustion.

FIGURE 2, on page 34, shows the apparatus used.

FIGURE 2

0 5 . 1

The student finds that when all the alcohol is burned, the temperature of the water increases from 18.9 °C to 78.1 °C

Calculate the enthalpy of combustion, in kJ mol⁻¹, for the alcohol.

The specific heat capacity of water, $c = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$ [3 marks]

Enthalpy of combustion kJ mol⁻¹

0 5 . 2

TABLE 2 shows the enthalpies of combustion of some alcohols.

TABLE 2

Alcohol	Enthalpy of combustion / kJ mol ⁻¹
Ethanol	-1367
Propan-1-ol	-2021
Butan-1-ol	–2676

Explain how your answer to Question 05.1, on pages 34 and 35, suggests that the alcohol is butan-1-ol.

(If you have been unable to obtain an answer for Question 05.1, assume that the answer is -2120 kJ mol⁻¹) [2 marks]

	_
	_

The equation for the complete combustion of gaseous pentan-1-ol is shown.

CH₃(CH₂)₃CH₂OH(g) +
$$7\frac{1}{2}$$
O₂(g) \longrightarrow
5 CO₂(g) + 6 H₂O(g) ΔH = -3388 kJ mol⁻¹

TABLE 3 shows some bond enthalpy data.

TABLE 3

	С–Н	С–О	О–Н	C=O	0=0
Bond enthalpy / kJ mol ⁻¹	412	360	463	805	496

Use data from TABLE 3 to calculate a value for the mean C–C bond enthalpy in pentan-1-ol. [3 marks]

C–C bond enthalpy kJ mol⁻¹

05.4

The energy stored in fuels can be compared using energy density values measured in kJ dm⁻³

Calculate the energy density of butan-1-ol.

enthalpy of combustion of butan-1-ol = -2676 kJ mol⁻¹

density of butan-1-ol = 0.810 kg dm⁻³ relative molecular mass (M_r) of butan-1-ol = 74.0

[2 marks]

Energy density	kJ dm ⁻³
Elieldy deligity	NJ UIII '

[Turn over]

10

on is about intermolecular forces in some organic compounds. This questi

TABLE 4, on page 44, gives some information about ic compounds. three organ

BLANK PAGI

TABLE 4

COMPOUND	dichloromethane	tetrachloromethane
BOILING POINT /	40	22
POLARITY OF MOLECULES	polar	non-polar

COMPOUND	propan-1-ol
BOILING POINT /	26
POLARITY OF MOLECULES	polar

9 0	_
9 0	•
0	9
	0

he C-CI bonds in dichloromethane and methane are polar. [1 mark] State why tl tetrachloro

7
9
0

hy tetrachloromethane molecules are [1 mark] Suggest w non-polar.

in why tetrachloromethane has a higher boiling than dichloromethane. [2 marks]			
Explain why tetra point than dichlo			

9	ks]				9
Propan-1-ol has a higher boiling point than the other two compounds because of hydrogen bonding.	[2 marks]				
he ot					
han t ing.	in propan-1-ol.				
oint t bond	prop				
ing p					
an-1-ol has a higher boiling point than ounds because of hydrogen bonding.	ribe the hydrogen bonding				
nighel se of	gen k				
as a h ecaus	ıydro				
ol ha	the h				
poun					n over
Prope	Desc				

on is about the preparation of hylbut-1-ene. 2,3,3-trimet This questi

$$\begin{array}{c} {\sf CH}_3 \\ {\vdash} \\ {\sf CH}_3 - {\sf CH} - {\sf CH}_2 - {\sf OH} \\ {\vdash} \\ {\sf CH}_3 \ {\sf CH}_3 \end{array} + {\sf H}_2 {\sf OH}$$

2,3,3-trimethylbutan-1-ol

2,3,3-trimethylbut-1-ene

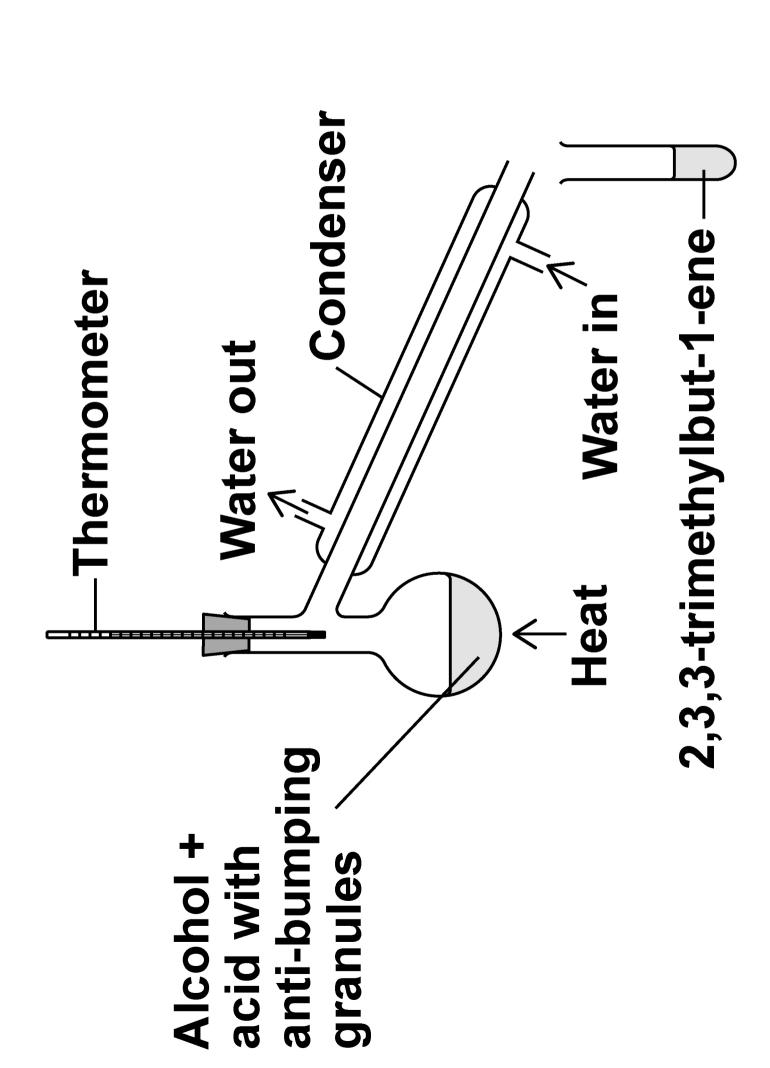
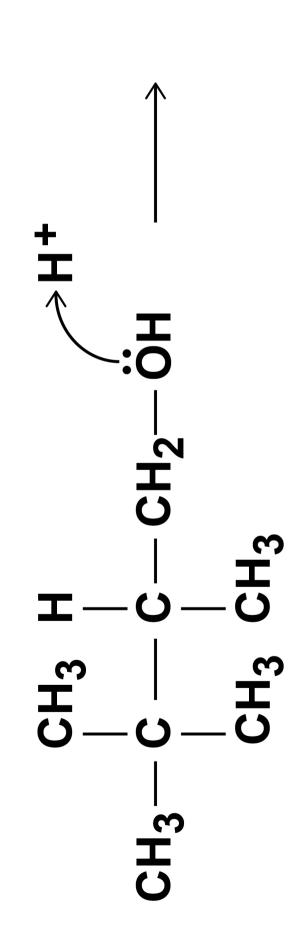

concentrated phosphoric acid, that acts as a catalyst. The preparation is done by heating the alcohol with

FIGURE 3, on page 50, shows the apparatus used.

BLANK PAGE

FIGURE 3


te is collected in the range 77-82 °C The distillat

 © 7 . 1 Explain why the water should enter the condenser at the bottom and not at the top. [2 marks] 		
---	--	--

complete the mechanism for this reaction. Name and [4 marks]

Name of mechanism

experiment, 12.0 cm³ of 2,3,3-trimethylbutan-1-ol produces 6.12 g of 2,3,3-trimethylbut-1-ene. In a similar e $(M_{\rm r} = 116.0)$

Calculate the percentage yield.

density of 2,3,3-trimethylbutan-1-ol = 0.818 g cm⁻³ [5 marks]

Percentage yield

[Turn over]

11

Draw the Maxwell–Boltzmann distribution curves for a fixed mass of a gas at two different temperatures. This gas decomposes when heated.

By reference to these distribution curves, explain why the rate of decomposition of this gas increases at higher temperatures. [6 marks]

BLANK PAGE

SECTION B

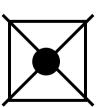
Answer ALL questions in this section.

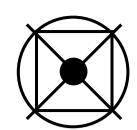
Only ONE answer per question is allowed.

For each question completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS





If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.

Do NOT use additional sheets for this working.

Which monomer forms this polymer? [1 mark]

$$\begin{array}{c|c}
 & CH_3 \\
 & C-CH_2 \\
\hline
 & CH_3 \end{array}$$

- O A but-1-ene
- O B *E*-but-2-ene
- O C Z-but-2-ene
- O D methylpropene

Which equation represents a propagation step in the chlorination of methane? [1 mark]

$$\bigcirc$$
 A \bullet H + Cl_2 \longrightarrow HCl + \bullet Cl

$$\bigcirc$$
 B •Cl + CH₄ \longrightarrow CH₃Cl + •H

$$\circ$$
 C \bullet CH₃ + Cl₂ \longrightarrow CH₃Cl + \bullet Cl

$$\bigcirc$$
 D \bullet CH₃ + \bullet Cl \longrightarrow CH₃Cl

CCl₃CH₂CCl₃ with an excess of chlorine in ultraviolet Which is the overall equation for the reaction of 1 mark radiation?

13CH2CCl3 + Cl2 --> CCl3CHClCCl3 + HCl \mathbf{m}

 l_3 CH₂CCl₃ + 2 Cl₂ \longrightarrow CCl₃CCl₂CCl₃ + 2 HCl

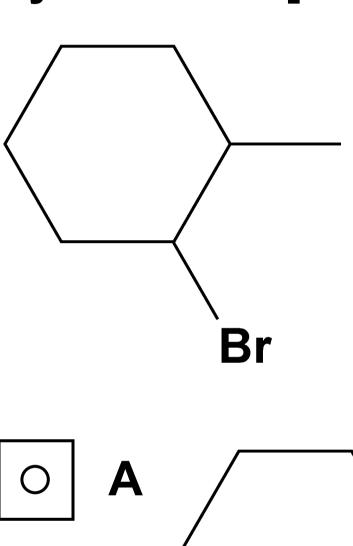
 $l_3CH_2CCl_3 + Cl_2 \longrightarrow CCl_3CCl_2CCl_3 + H_2$

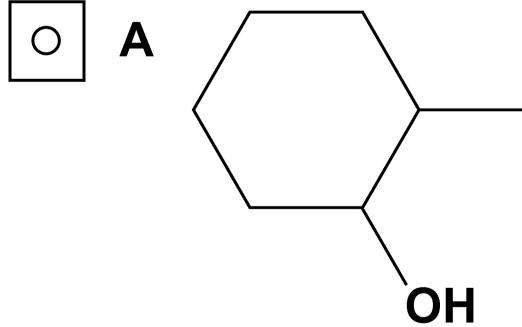
ists believe that ozone in the upper atmosphere be allowed to become depleted. **Most scient** should not

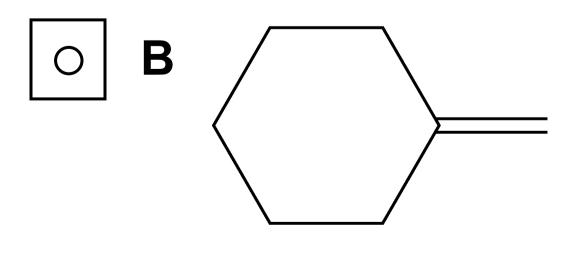
Which is a valid reason for this belief? [1 mark]

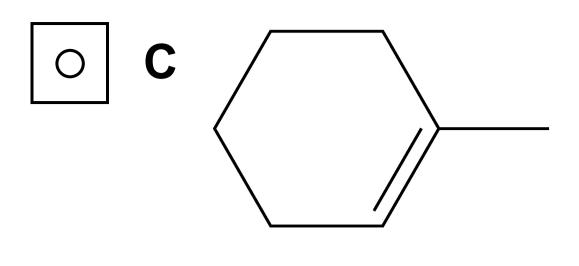
one absorbs ultraviolet radiation. OZO 4

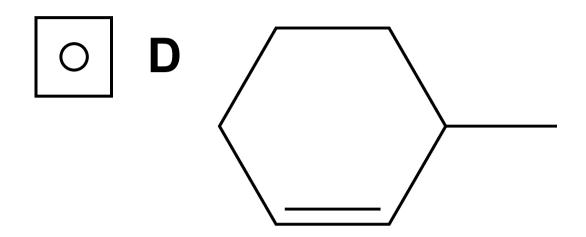
one helps to prevent global warming. OZO \mathbf{m}

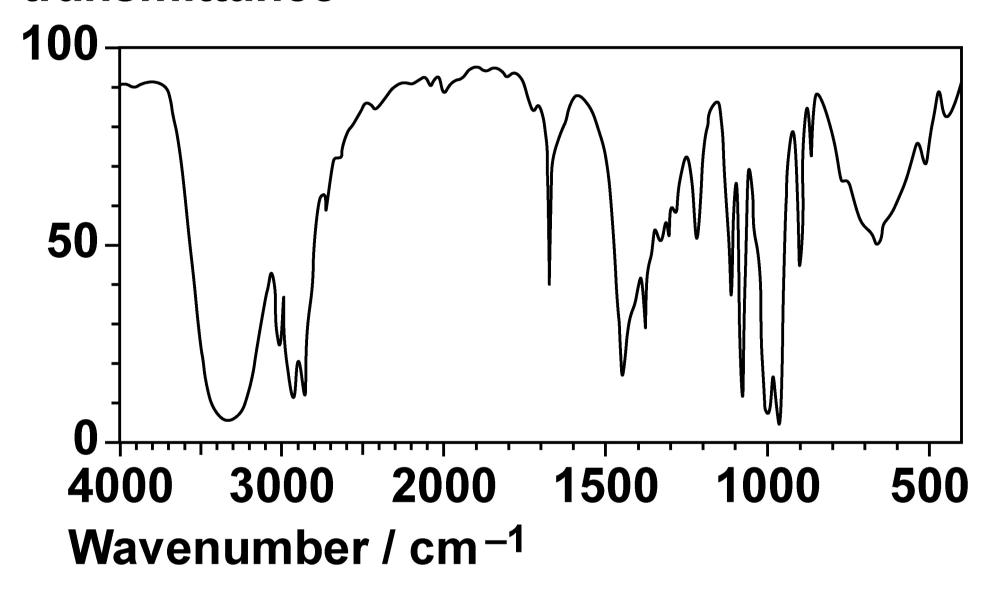

Ozone helps to remove pollutants such as chloroalkanes. C




one is an efficient disinfectant. OZ O


Which is NOT a possible product of the reaction of this compound with potassium hydroxide? [1 mark]





The infrared spectrum of an organic compound is shown.

Percentage transmittance

Which compound could produce this spectrum? [1 mark]

O B but-2-en-1-ol

O C butanoic acid

O D butan-2-ol

Which reaction results in an overall change in shape around a carbon atom? [1 mark]

- A oxidation of propanal with acidified potassium dichromate(VI)
- B polymerisation of tetrafluoroethene
- C reaction of bromoethane with an excess of concentrated ammonia
- O D reaction of methane with an excess of chlorine in ultraviolet radiation

BLANK PAGE

Which statement about the industrial production of ethanol from ethene at 300 °C is correct?

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

$$\Delta H = -46 \text{ kJ mol}^{-1}$$

[1 mark]

- A An increase in pressure decreases the equilibrium yield of ethanol.
- \circ B An increase in pressure increases the value of K_c
- C An increase in temperature increases the equilibrium yield of ethanol.
- O An increase in temperature decreases the value of K_c

What is the minimum volume, in dm³, of air needed for the complete combustion of 1 dm³ of methane?

Assume that air contains 20% of oxygen by volume.

Assume that all volumes are measured at the same temperature and pressure.
[1 mark]

O D 10

Which is the IUPAC name for this compound?

$$H$$
 $C = C$
 $H_3C - CH_2$
 CH_2
 CH_3

[1 mark]

- A *E*-3-fluorohex-3-ene
- B *E*-4-fluorohex-3-ene
- C Z-3-fluorohex-3-ene
- O D Z-4-fluorohex-3-ene

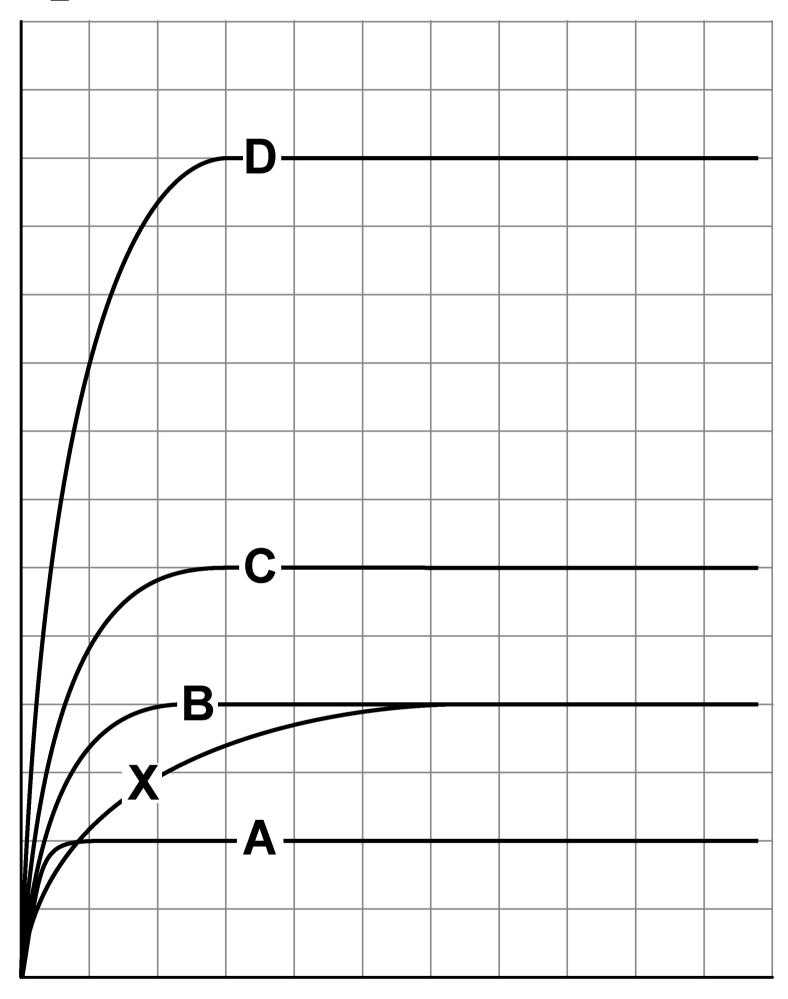
Magnesium reacts with an acid to form hydrogen gas.

Line X on the graph, on page 77, shows how the volume of hydrogen gas varies with time when 50 cm³ of 0.50 mol dm⁻³ acid reacts with an excess of magnesium.

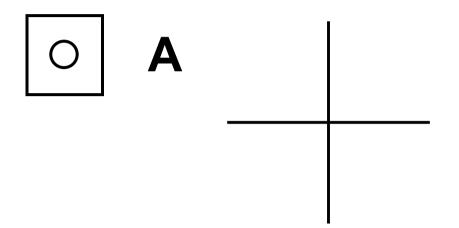
The reaction is repeated under the same conditions but using 25 cm³ of 1.50 mol dm⁻³ acid. The magnesium is in excess.

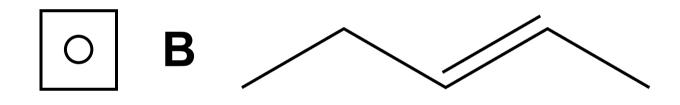
Question 19 continues on page 76.

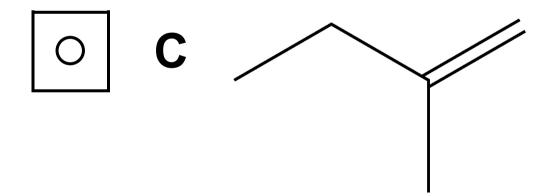
Which line, on the graph on the opposite page, represents this second reaction? [1 mark]

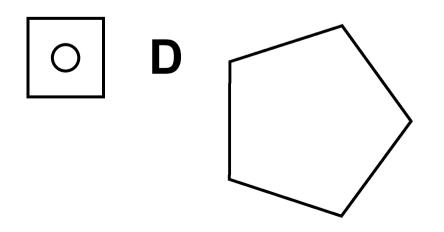


O D line D


Volume of H₂




Time



Which compound has the greatest M_r ? [1 mark]

Which compound has the empirical formula C₂H₄O? [1 mark]

- A butanal
- O B ethanoic acid
- C ethanol
- O D methylpropanoic acid

The alcohol CH₃CH₂CH₂OH can be oxidised.

Which compound CANNOT be produced by oxidation of this alcohol? [1 mark]

O CH₃CH₂COOH

What is the atom economy for the formation of ethylamine in this reaction?

 $CH_3CH_2Br + 2 NH_3 \longrightarrow$ $CH_3CH_2NH_2 + NH_4Br$

[1 mark]

- O A 31.5%
- O B 35.7%
- O C 36.1%
- O D 41.3%

END OF QUESTIONS

15

Additional page, if required.		
Write the question numbers in the left-hand margin.		

Additional page, if required.		
Write the question numbers in the left-hand margin.		

BLANK PAGE

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
Section B		
TOTAL		

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

WP/M/NC/Jun23/7404/2/E2

