

A-level ENVIRONMENTAL SCIENCE 7447/1

Paper 1

Mark scheme

June 2023

Version: 1.1 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Qu	Part	Marking guidance	Comments	Total marks	AO
01	1		-	4	AO1 1b
		Name of process	Number		
		Weathering	2		
		Absorption/uptake	4		
		Decomposition/decay	7		
		Runoff	3		
		Mountain building	1		
		L			

Qu	Part	Marking guidance	Comments	Total marks	AO
01	2	 Addition/use of organic fertiliser/matter/DOM/manure/mulch/guano deposits. 			AO1 1b
			Total =	5	

Qu	Part	Marking guida	nce	Comments	Total marks	AO
02	1					
		Name of survey technique	Description of how it works			AO1 1a
		Seismic survey	The use of reflected sound waves to produce data about the density and shape of rock strata at great depth		1	
		Resistivity	Measurement of the difficulty/ease of the passage of an electric current through rock		1	
		Gravimetry/ gravimetric surveys A: Seismic surveys		used to measure or map n density of crustal rocks	1	

Qu	Part	Marking guidance	Comments	Total marks	AO
02	2	 Drones: larger area covered per unit time/ area/lower cost per unit area/surv require direct access/less labour environmental impact Trial drilling: define extent/boundaries/purity/qu core samples/only method of obta stability/confirm safe to drill. 	vey inaccessible areas/doesn't intensive/reduction of <u>named</u> uality of mineral ore deposit from	1	AO2

Qu	Part	Marking guidance	Comments	Total marks	AO
02	3	One mark for impact and a linked e	5	AO1 1b	
		Max 5 impacts and linked explanation eg	x 5 impacts and linked explanation.		
		Impact – (increase in) noise pollutio	n		
	 Explanation of how impact reduced use of acoustic insulation (of machinery) absorbs sound/baffle mounds/embankments/walls/vegetation/buffer zone deflects/reflects/contains sound. operations, eg blasting at less annoying times/time zoning, eg allocated days and times. maintenance/lubrication of machinery to get rid of squeaks transport routes away from sensitive areas, eg densely populated 				
		Impact – (increase in) dust pollutior	l		
		 Explanation of how impact reduc aid settling by creating heavier du sprays/sprinklers/bowsers/road/ty compacted dust less prone to win covered loads prevent dust loss b use of filters/face masks/electrost remove dust particles 			
		Impact –Turbid (drainage) water pc	Ilution		
		Explanation of how impact reduc - sedimentation lagoons allow settl			
		Impact – Aesthetics (of site includir amenity	g spoil/waste)/visual/loss of		
		Explanation of how impact reduc - use of landscaping/trees as visua			
		Impact – Unstable spoil heaps/land	slips/slides/subsidence		
		 Explanation of how impact reduc use of landscaping to reduce grad vegetation covering/avoid waterlo backfilling/support beams 	dients/improve stability by		
		Impact – (Acidic) leachate/mine wa	ter/heavy metal pollution		
		 Explanation of how impact reduc raise pH by passing leachate ove bioremediation (of heavy metals) 			

Impact - Habitat loss/damage/land take Explanation of how impact reduced - restoration/creation/rewilding/relocation - deep shaft mining/directional drilling Impact – named greenhouse gas emissions from vehicles/machinery		
Explanation of how impact reduced		
 hybrid/electric vehicles catalytic converters (for NO_x) 		
Total =	10	

Qu	Part	Marking guidance	Comments	Total marks	AO
03	1	 sandy clay 		1	AO1 1b

	Qu	Part	Marking guidance	Comments	Total marks	AO
Ē	03	2				AO3 1a
						AO1 1b

Qu	Part	Marking guidance	Comments	Total marks	AO
03	3	Max two features		4	AO1 1b
		Max two linked impacts on nutrients			
		Features:			
		Two from			
		 Drainage rate – sandy soils increased water loss/clay soils retain water Aeration/pore spaces - sandy soils have large pore spaces /more aeration, clay soils have small spaces/less aeration Root penetration – sandy soils have larger pores spaces increasing root penetration/clay soils have small particles/particles held together so decreased root penetration Clay has (negative) charges on particles 			
		Impacts:			
		Two from			
	 Sandy soils - increases nutrient loss by leaching/clay soils decreases nutrient loss by leaching Sandy soils - increased decomposition/DOM, clay soils -decreased decomposition/DOM Sandy soils - increased nitrification/bacterial oxidation increasing nutrient levels/clay soils decreased 				

 nitrification/bacterial oxidation decreasing nutrient levels Clay soils – adsorption on particle surface/cation exchange 	
Allow 1 mark for a named texture and linked appropriate nutrient level e.g.clay soils have higher nutrient levels	

Qu	Part	Marking guidance	Comments	Total marks	AO
03	4	 13 or 437 2.9 ecf Award 2 marks for correct answer with no working 	450 - 437 13/450 x 100 = 2.88 or 437/450 x 100 = 97.11, 100 - 97.11 = 2.9%	1 1	AO3 1a

Qu	Part	Marking guidance	Comments	Total marks	AO
03	5	 Particles trapped in mesh/lost as dust/attracted to sieve sides and mesh, eg static so cannot be removed and weighed 			AO3 1b
			Total =	10	

Qu	Part	Marking guidance	Comments	Total marks	AO
Qu 04	Part	 Up to two marks for trend descrip Up to two marks for linked explar Trend (must link to variable): e.g. low slope gradient (< five) no more soil lost (eroded) from fa bare/forest)/least soil from for farmland). as gradient increases mass o increases (in all areas) less sediment collected/erode in forest exponential soil loss soil as gradient increases 	btion. hation. soil loss armland(than from est (compared to bare and f sediment collected/eroded ed from forests than farmland but uniform in farmland and bare rate of soil loss compared bare reces between soil particles		AO AO3 1a = 2 AO3 1b = 2
		 particles more easily moved be energy of soil particles increase exposure to wind (higher velose) more interception provided by 	by downward flow of water/kinetic se/due to rainsplash icity) leads increases erosion rate of canopy cover/allows time for ff/less time for water to infiltrate blash duced as gradient increases p rooted trees/so less soil es OM content of soil and city of soil so less runoff		

Qu	Part	Marking guidance	Comments	Total marks	AO
04	2	Two marks for variables. Two marks for linked explanation.		4	AO2
		 eg soil texture infiltration/permeability affects run length of slope affects volume/speed of runoff volume of water falling at each sit affects amount of runoff/rain splase wind velocities/direction/duration wind energy moves/dislodges pare soil depth greater soil depth affects water here affects evaporation /drying rates Allow 1 mark for valid comparison of will have more erosion/ref to keepsame/similar 	e over year sh erosion ticles/scouring olding capacity f variables e.g. higher rainfall areas		

Qu	Part	Marking guidance	Comments	Total marks	AO
04	3	 Any two from: Sedimentation reduces flow capacity /causes downs biodiversity of aquatic/coral i depth/volume reduced (for a Turbidity reduces photosynthesis blocks fish gills inhibit filter feeders reduces visibility of food soutes Increased nutrients lead to eutror algal blooms/deoxygenation Pesticides cause toxicity/bioacc 	reefs/fish nursery grounds quatic organisms) rce/prey/predator pphication/eutrophication leads to	2	AO1 1b
			Total =	10	

Qu	Part	Marking guidance	Comments	Total marks	AO
05	1	 1005 + 16 305 + 684 + 7172 or 25 166 49 078 - 25 166 or 23 912 ecf from 1st mpt (their 25 166) (23 912/60 000) x 100 ecf from 2nd m.pt (their 23 912) 39.9% Max 3 marks for one ecf Max 2 marks for two ecf Award 4 marks for correct answer with no working 	Total electricity generated in 2019: 1005 + 16 305 + 684 +7172 = 25 166 MW Increased electricity that needs to be generated by 2050: 49 078 – 25 166 = 23 912 MW as % of 60 000 MW available (23 912/60 000) x 100 = 39.853 to 1 dp	4	AO3 1a

Qu	Part	Marking guidance	Comments	Total marks	AO
05	2	Five from:		5	AO2
		 fewer locational constraints of la valleys/ micro HEP suitable for i can be used in areas where wate can be used for lower velocities/fl Micro HEP schemes don't dam riv reduction of named environmenta (organisms) to pass without dama less infrastructure needed/only constraints for support/other name companies for support/other name sufficient for low demand/smaller less wasted energy reduced named impact on local companies constraints amount harnessed/(Kaplan and) helical turbines can use turbid wate water wheels do not suffer from states 	solated/inaccessible areas r drop is over short distance ow rate vers/(divert water) so less flooding al impact eg habitat loss/allow fish age onnect to local community d repair/less dependent on larger ed reduced cost eg installation population community eg fisheries ht of kinetic energy urbines have high efficiency ter without damaging blades		

Qu	Part	Marking guidance	Comments	Total marks	AO
05	3	 One from: named conflict/objection, eg aest connecting cables, planning not g villages about installation/ecologic areas/species protection)/blocking responsibility/expertise for maintee lack of local funding/lack of local lack of (affordable) generators/eq to transport electricity accessibility problems. 	ranted/disputes between local cally sensitivity (designated g transport routes for boats nance lacking policies on renewables	1	AO2

Qu	Part	Marking guidance	Comments	Total marks	AO
05	4	• 10.3%	0.67/6.5 x 100 = 10.3% of max flow rate	1	AO3 1a
		 42 % efficiency (A: figures in the range 40% - 44%) 	Accept correct reading from graph using their figure from mpt 1 10.3% (or their figure) flow rate = 42 % efficiency	1	
		 48.8 kW (A: 46.5 kW – 51.2 kW) Award 3 marks for correct answer with no working 	0.67 flow rate = 100 x 42/86 = 48.83	1	
		Max 2 marks for one ecf Max 1 marks for two ecf			

Qu	Part	Marking guidance	Comments	Total marks	AO
05	5	 Two from: wildlife habitat change/creation/de barrier to migratory fish species (relation) loss of named land use eg farmin anaerobic conditions increase mee changed abiotic factor eg increase reduced, humidity reduced nutrients downstream (de loss of land due to (potential) increservoir induced seismicity/instatesedimentation build-up behind date reduced water flow downstream for fisheries, water provision reduced water flow downstream la conditions. 	reducing population numbers) g, forestry ethane (due to OM decomposition) ed wind speeds, temp extremes ue to less sediment transfer) eased bank erosion downstream bility due to mass of water m causing stress on dam or habitats, land use eg farming,	2	AO1 1b
			Total =	15	

Qu	Part	Marking guidance	Comments	Total marks	AO
06	1	Advantage: • (base load) production as reliable	dvantage: (base load) production as reliable/predictable/consistent		AO2
		Disadvantage:cannot respond quickly to sudden	peaks/increased demand	1	

Qu	Part	Marking guidance	Comments		Total marks	AO
06	2	 Three from (surplus electricity used to) pum stored as gravitational potential e water released (to match fluctuati quick/rapid response 	nergy/GPE/peak shaving		3	AO2
			т	otal =	5	

Qu	Part	Marking guidance	Comments	Total marks	AO
07	1	• 17	(land) X = 107 – (19 + 71) = 17	1	AO3 1a
			or (oceans) X = 434 – (398 + 19) = 17		

Qu	Part	Marking guidance	Comments	Total marks	AO
07	2	One mark for selecting correct figures for use in RT calculation	Volume in reservoir: $4.5 + 11 = 15.5 \times 10^{15}$	1	AO3 1a
		• 4.5 + 11 = 15.5 and 398 + 107 or 434 + 71 = 505	and annual rate of flow in or out: 398 +107 = 505 or 434 + 71 = 505 x 10 ¹⁵		
		One mark for calculation of RT0.03(069307) year	15.5 x 10 ¹⁵ /505 x 10 ¹⁵ = 0.03069307 year	1	
		One mark for final answer in days11 days	0.03069307 x 365 days = 11.2 days = 11 days to nearest whole day	1	
		Max 2 marks for 1 ecf Max 1 mark for 2 ecf			
		Award 3 marks for correct answer with no working			

Qu	Part	Marking guidance Comments		Total marks	AO
07	3	 more interception/more (evapo)transpiration/less infiltration/more (root) uptake (so less water percolates down)/less runoff 		1	AO2
			Total =	5	

Part	Marking guidance	Comments	Total marks	AO
1	• 500 minutes [A: 450 – 550 minutes]		1	AO2
	8 hours 20 minutes		1	
	[A: correct conversion of value from MP1]			
	Award 2 marks for correct answer w	vith no working		
	Part 1	 1 • 500 minutes [A: 450 – 550 minute • 8 hours 20 minutes [A: correct conversion of value from 	1 • 500 minutes [A: 450 – 550 minutes]	Part Marking guidance Comments marks 1 • 500 minutes [A: 450 – 550 minutes] 1 • 8 hours 20 minutes 1 [A: correct conversion of value from MP1] 1

Qu	Part	Marking guidance	Comments	Total marks	AO
08	2	Two from: e.g • stress • ulcers • high blood pressure • heart disease • tinnitus • psychological issues/aggression/ • sleeplessness. R: brain damage, cancer	rritability	2	AO2

Qu	Part	Marking guidance	Comments	Total marks	AO
08	3	Five from:		5	AO3 1a
		 Two marks: calibrated/standardised sound level calibrated/standardised sound energy one mark: systematic sampling/regular/equation Two marks: 10 or more sampling sites / 50m integration transect length at least 500 m /to Two marks from reliability: same wind direction/velocity/hum same height of sound meter from same topography/same place/same nearby repeating readings (at each site) same height of barrier. 	hitter al intervals ntervals to 500m the houses/residents idity/rainfall source me reflective or absorbent surfaces		

Qu	Part	Marking guidance	Comments	Total marks	AO
08	4	 One from: double/triple glazing and absorbs transmission acoustic insulation to deflect/absorblue to increase distance from set of increase distance from set of absorb/deflect/contain noise (planned) increased distance of b reduction is inversely proportional square law. 	1	AO1 1b	
			Total =	10	

Qu	Part	Marking guidance	Comments	Total marks	AO
09	1		Any valid method, eg	3	AO2
		One mark for volume • 1254 m ³	1) Area covered = 3.3 km^2 = $3.3 \times 10^6 \text{ m}^2$ Depth of oil = 0.38 mm = $0.38 \times 10^{-3} \text{ m}$ Volume = area x depth = $(3.3 \times 10^6 \text{ m}^2) \times (0.38 \times 10^{-3} \text{ m})$ = 1254 m^3		
			Mass of oil spilled = volume x density		
		One mark for mass • 1191.300 kg	= 1254 m ³ x 950 kg m ⁻³ = 1191300 kg = 1191.300 tonnes		
		One mark for mass in tonnes (2 sig figs) • 1200	= 1200 tonnes (2 sig figs)		
		• 1200	2) Area covered =		
		Max 2 marks for one ecf Max 1 mark for two ecf	Area covered = $3.3 \text{ km}^2 = 3.3 \text{ x } 10^6 \text{ m}^2$ = $3.3 \text{ x } 10^{12} \text{ mm}^2$		
		Award 3 marks for correct answer with no working	Depth of oil = 0.38 mm Volume = area x depth = $(3.3 \times 10^{12} \text{ mm}^2) \times (0.38 \text{ mm})$ = $1.254 \times 10^{12} \text{ mm}^3$ $(10^9 \text{ mm}^3 \text{ in a m}^3 \text{ so } \dots)$ = $1.254 \times 10^3 \text{ m}^3$		
			Mass of oil spilled = volume x density = $1254 \text{ m}^3 \text{ x } 950 \text{ kg m}^3$ = 1191300 kg = 1191.300 tonnes = 1200 tonnes (2 sig figs)		

Qu	Part	Marking guidance	Comments	Total marks	AO
09	2	Two from:			AO1 1b
		 (large amounts of data) can be continuous data collection (over the accurately measured wider area can be covered can detect spills quickly/planes has 	me)/ extent of spread can be		

Qu	Part	Marking guidance	Comments	Total marks	AO
09	3	Two from:			AO1 1b
		 reduces light available for <u>photos</u> reduces dissolved oxygen for res toxic effects on coral/food sources reduces filter feeding/clogs cilia o named example of species interdeg, plankton, reducing nutrients 	piration (by coral polyps) s of polyps f polyps		

Qu	Part	Marking guidance	Comments	Total marks	AO
09	4	Three from:		3	AO2
		 improved shipping routes/shipping coastlines where possible improved navigation systems/GP inert gas systems/cooled exhaust recirculating oil in oil tanks rather not discharged) oily waste water disposal/oil sepa double hulls/gap between hulls (so of oil leaking)/reinforced/strengthe twin engines/rudders/fuel tanks (ir avoid collisions) separate oil and ballast tanks (avoid here separate oil and ballast tanks (avoid here separate oil tankers/fewer 	S/AIS gas to fill tanks after unloading than washing of oil tanks (sludges rated from water at terminal to damage to outer hull reduces risk ened hulls f one fails there is a back-up to oid oily water being discharged		
			Total =	10	

Qu	Part	Marking guidance	Comments	Total marks	AO
10	1	Four from:		4	AO2
		 reversal/weakening of the trade reversal/change of direction of warm (surface) waters towards no upwelling/cold dense water nutrients do not rise no food for anchovy as phytopl collapse. 	(surface) current the coast of Peru does not rise		

Qu	Part	Marking guidance	Comments	Total marks	AO
10	2	Two from: Increased: • temperatures • humidity • rainfall/flooding/(tropical) storm • landslides/soil/coastal erosion • ice melt • plant growth/crops • disease, eg malaria.	S	2	AO2

Qu	Part		Marking guidance	Comments		Total marks	AO
10	3	me	r L3 students must evaluate th asures and include description ategies.		e AO1 4 1a 2 1b 9 AO2 3 AO3 2 1b 1 1c		
Greer gases	nhouse S	•	General methods/strategies	Specific methods/strategies	E١	aluation (Exam	of success ples)
ALL			Legislation – Kyoto Protocol 1997/Paris Agreement 2015 (plus Montreal Protocol 1987 for CFCs and other ODSs that are GHGs)	Targets for reduction in emissions/methods to limit GMST increase to 2°C	Not all countries signed up (Kyoto, Paris) Success of Paris not yet known Montreal successful – alternatives available, fewer ways in which ODSs used		
CO ₂			Technological methods	Carbon capture and storage Afforestation/reforestation Geoengineering (examples) Increased efficiency of combustion, eg in vehicle engines (MOT tests) Alternative energy resources (eg named renewables, nuclear fission)	CCS still under-develope Afforestation/reforestatio will act as immediate carbon sinks Geo-engineering – less impact so far than other methods Transport – CO ₂ emission have been reduced Low carbon energy resources very successfully used (examples of expansion of wind and solar in UK and worldwide etc, massive reduction in coal fired- power stations UK		eforestation nediate ing – less han other O ₂ emissions luced nergy y sed expansion of r in UK and massive pal fired-
			Energy conservation (could also be considered as technological methods)	Domestic, eg insulation, heat recovery systems, double glazing, low energy appliances Industry, eg insulation, heat recovery systems, high volume storage, CHP/District Heating	cons cons succ Gov foss – to	servation a servation h cessful rt targets to	s to increase and industrial have been o phase out cles by 2030 evaluate

		Transport: bulk transport, vehicle design (lower mass materials etc)	
	Behavioural methods	Car sharing, turning heating down, buying locally produced food, turning off lights etc	Individual behaviour varies – cheap food not locally produced still prevalent in supermarkets, out of season food transported globally, car sharing not convenient. Less successful
CH₄	Technological methods	Collecting methane from landfill for energy production	Increased electricity production from landfill gas
		Reducing livestock production – low meat diets	EU landfill directive/landfill
		Reducing organic waste going to landfill (waste food collection/composting)	tax reducing waste to landfill
		Improving coal mine ventilation/collection of methane from coalmine ventilation	
		Increased maintenance of gas pipelines to reduce methane leaks	
		R: reduce production of rice (as this has not been used – ethical issues?)	
	Behavioural methods	Changing to low/no meat diets	More people becoming vegetarian/vegan
		Composting of food waste	More opportunities and willingness to recycle, compost etc
NOx	Technological methods	Alternative energy resources (for electricity generation and vehicles) Catalytic converters Urea sprays Low temperature combustion	Successful implementation of alternative energy resources (but still a long way to go). Catalytic converters have reduced NO _x from petrol engines but not diesel
	Energy conservation methods	Domestic, eg insulation, heat recovery systems,	See CO ₂

	(could also include technological methods)	double glazing, low energy appliances	
		Industry, eg insulation, heat recovery systems, high volume storage, CHP/District Heating	
		Transport: bulk transport, vehicle design (lower mass materials etc)	
	Behavioural methods	Car sharing, not buying diesel vehicles, turning heating down, buying locally produced food, turning off lights etc	See CO ₂
CFCs	Technological methods	Alternative processes (trigger/pump action sprays, roll on deodorants)	Successful as production was quickly banned – alternatives available
		Alternative materials (alcohols, propane, butane, isobutene, HCFCs, HFCs)	
		Collection and incineration of CFCs	
Tropospheric ozone	Any method that reduces NO _x		Still problematic in areas of the world where catalytic converters not a legal requirement on petrol engines
		Total =	15

Examiners are reminded that AO1, AO2 and AO3 are regarded as interdependent. When deciding on a mark all should be considered together using the best fit approach. In doing so, examiners should bear in mind the relative weightings of the assessment objectives. More weight should therefore be given to AO1 than AO2 and AO3.

Level	Marks	Descriptor	
		A comprehensive response to the question, with the focus sustained.	
		A conclusion is presented in a logical and coherent way, fully supported by relevant judgements.	
3	7–9	A wide range of knowledge and understanding of natural processes/systems is applied. The answer clearly identifies relationships between environmental issues.	
		Relevant environmental terminology is used consistently and accurately throughout, with no more than minor omissions and errors.	
		A response to the question which is focused in parts but lacking appropriate depth.	
		A conclusion may be present, supported by some judgements, but it is likely not all will be relevant.	
2	4–6	A range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there may be a few inconsistencies, errors and/or omissions. The answer attempts to identify relationships between environmental issues, with some success.	
		Environmental terminology is used, but not always consistently.	
		A response to the question which is unbalanced and lacking focus. It is likely to consist of fragmented points that are unrelated.	
		A conclusion may be stated, but it is not supported by any judgments and is likely to be irrelevant.	
1	1–3	A limited range of knowledge and understanding of natural processes/systems is shown. There is an attempt to apply this to the question, but there are fundamental errors and/or omissions. The answer may attempt to identify relationships between environmental issues, but is rarely successful.	
		Limited environmental terminology is used, and a lack of understanding is evident.	
	0	Nothing written worthy of credit.	

Qu	Part	Marking guidance	Comments	Total marks	AO
11	1	Students should be able to dem pollutant properties, their impact methods used to reduce those in examples.	ts on the environment and	25	AO1 = 10 AO2 = 10 AO3 = 5
-	ic area/ ec ref	Properties of pollutants	Impact on Environment		ls/strategies uce impact
polluta 3.4.2.	1 rs that	State of matter: Solid/liquid/gas eg lead dust, acid mine water drainage, sulfur dioxide, CFCs	Gaseous and liquid pollutants have potential to travel further- depends on velocity of wind/currents and direction. eg of transboundary pollutants eg acid rain in Scandinavia, Cs-137 Chernobyl. Denser pollutants eg lead source (unless mobile though food chains)	 The following can be applied for most pollutants. 1) Monitoring: a) to identify and predict pollutant mobility post discharge: critical pathway analysis b) to identify health risks from pollutants and those members of public at greatest risk; critical group monitoring 2) Control technologies to: reduce production and release 3) Development of alternatives, substitutes to perform the same function as original. 	
factor	onment		Noise, light may have local/restricted impacts lonising radiation – local, regional, transboundary		
degra 3.4.3 Princi contro 3.4.3. Contro	dation .1 ples of bl 2	Persistence eg high persistence - CFCs, organochlorine insecticides -DDT low persistence- sewage, pyrethroid insecticides	Affected by environmental conditions such as abiotic factors: oxygen availability, temperature (thermal degradation), light (photo degradation), pH, presence of other pollutants, topography, temperature inversions and biotic factors such as presence of bacteria (biodegradation).		
		Reactivity/chemical stability eg CFCs low reactivity except in the presence of UV light NOx, ozone, hydrocarbons high	Reactive pollutants may degrade quite quickly eg sewage or react with other pollutants to produce more toxic secondary pollutants. eg as in photochemical smog Rate of degradation/reactivity affected by abiotic factors: oxygen, temperature, light, pH Chemically stable pollutants may remain in the environment for a long time		
		Adsorption Attachment to soil or sediments	Can immobilise pollutants until disturbed eg PCBs		

Solubility in lipids/water eg DDT in lipids, nitrates in water	Water soluble pollutants easily dispersed. Liposoluble pollutants can bioaccumulate and biomagnify Impact on living organisms and food chains/webs	
Synergism Two pollutants interact to cause a more serious effect.	Examples to illustrate eg ozone and sulfur dioxide in acid rain damaging coniferous forests.	
Specificity Variations in toxicity to different groups	eg Pyrethroid insecticides have high toxicity to insects and low toxicity to mammals	
Toxicity How poisonous a substance is. eg CO , lead, cyanide	Inhibits enzyme action CO binds to haemoglobin instead of O ₂ . Lead inhibits enzyme action in nerve cells Cyanide inhibits aerobic respiration enzymes	
Carcinogenic action Mutagens that cause cancer eg asbestos, radon	Cause uncontrolled cell division in various tissues to produce an undifferentiated mass of cells known as a tumour.	
Mutagenic action Cause change in DNA structure – mutations eg ionising radiation/UV/PCBs	Gonadic effects – abnormality in offspring Somatic effects - cancers	
Teratogenic action Normal gene expression inhibited affecting foetal development. eg mercury	Cause birth abnormalities in offspring. The birth abnormality cannot be inherited by future generations because the DNA structure is not affected	
	Total =	25

Qu	Part	Marking guidance	Comments	Total marks	AO
11	2	energy resource properties	demonstrate their knowledge of , the impact of their use on the used to reduce those impacts by s.	25	AO1 = 10 AO2 = 10 AO3 = 5
-	ic area ec ref	Properties of energy resources	Impact on Environment	Methods/st reduce	
of cur energ resou explo 3.3.4 Strate secur energ suppl 3.3.4. Evalu impro extrate harne and proce	res of y inces inability rent y ince itation e future y ies. 1 iation of ved ction, essing	Non renewable eg fossil fuels/ depletable eg wood/felled forests not replaced	All energy resource exploitation has impacts. Students need to consider the scale, type and timing of impacts. eg construction of wind turbines may involve use of fossil fuels re metal exploitation, manufacture and construction on site but once operational impacts are less, more local, not global. eg visual pollution, bird/bat strikes eg use of coal in power stations involves release of CO ₂ and SO ₂ causing atmospheric pollution having a larger/global impact.	Students shou these by using examples. eg wind turbin location to ave paths, stoppin if raptors in vio Aerodynamic of direct drive to levels. eg coal fired p – use of scrub remove SO ₂ . Carbon of technology to remove CO ₂ . Coal gasificati liquefaction. 1°/2°/3° oil real New designs a technologies e and wind make cheaper and fe have less of a edge, so impa	es - careful bid bird flight g of turbines cinity. design and reduce noise ower stations bers to capture potentially on, covery and eg in solar e them ossil fuels competitive
		Intermittency eg wind, solar Intermittent but predictable eg tidal	As above. Need for other energy resources to 'plug the gap' when turbines and solar not operational.	Development storage techno reduce depend fossil fuels and environmental eg converted t energy, chemi or gravitationa energy eg hyd	blogies to dency on d associated problems. to thermal cal energy, l potential
		Energy density Higher – need less of fuel, reach higher temperatures	As above for fossil fuels. The low energy density of most renewable energy resources increases the amount of	Use of energy convert surplu from renewabl	storage to s energy

eg fossil fuels, nuclear	equipment needed. eg greater land take re output of wind farms needed compared to nuclear power station. Nuclear power produces nuclear waste	energy density secondary fuels eg hydrogen. Develop extraction techniques from other uranium sources for nuclear industry to minimise exploitation of ores eg polymer adsorption, phosphate mining and extraction of uranium from coal ash
Abundance/resource availability/locational constraint	Abundant but less accessible resources little environmental impact eg deep water oil reserves. Coal seams at surface can be accessed by open cast but greater impacts.	New technologies re directional drilling, GPS positioned ships allow for minimising impacts as technology develops. Open cast mining: techniques to reduce dust, water, noise pollution, restoration of habitats post mining.
Form of energy	Need for conversion to increase usefulness, eg chemical energy in fossil fuels to electrical energy, kinetic energy in wind to electrical energy	Minimise the number of energy conversions needed, to reduce the potential impacts/energy losses
Ease of storage	Fossil fuels and nuclear can be stored, renewables generally cannot (exceptions, biofuels as chemical energy, tidal power in lagoons, HEP as GPE etc), hydrogen can be stored in fuel cells Non-renewable – habitat damage/destruction from exploitation of the resource Atmospheric pollution and nuclear waste from use Biofuels may create land-use conflicts when land needed for food production Tidal power has significant environmental impacts, eg loss of feeding grounds, increased concentration of pollutants, barriers to migrating species etc	Nuclear storage – strict controls on site to reduce radiation exposure/leaks Biofuels – develop energy mix policy, look at land used – not suitable for food crop but quick growing biomass. Tidal power- not developed in UK due to estuarine ecosystem impacts as well as costs.

	Environmental impacts of HEP – habitat/amenity loss, methane release, changes to downstream river flow, micro-climate changes etc	
Ease of transportation	Usually high energy density bulk transport fuels. Transport from source to point of energy generation. Impacts of fossil fuel driven transport eg emissions Non renewables from point of origin to use need infrastructure such as cables. In accessible areas, habitat destruction –	Maximise quantity transported for minimum energy expenditure – via rail network Infrastructure design re cabling – underground /overground.
	seabed cables etc	Through AONB areas, bird flightpath areas, etc
Embodied energy	Examples of energy resources with high embodied energy – nuclear power (processing of U ₂₃₅ , manufacture of concrete for power plants); solar panels (extraction and processing of materials e.g. silicon, metals) etc	e.g. Alternatives to U ₂₃₅ e.g. thorium, renewables, plutonium (breeder reactors); new designs of solar/wind equipment that increases efficiency (so less extraction, transport etc)
	Total =	25

Level	Marks	Descriptors	
		A comprehensive response with a clear and sustained focus. Content is accurate and detailed. Relationships are identified, reflecting the holistic nature of environmental science and the answer as a whole is coherent.	
5	21–25	A wide range of relevant natural processes/systems and environmental issues are described and articulated clearly. These are applied systematically to the question, with clear relevance to the context.	
		Where conclusions are made, these are fully supported by judgements and presented in a logical and coherent way.	
		Relevant environmental terminology is used consistently and accurately throughout. If there are errors, these are very minor indeed and not sufficient to detract from the answer.	

-		
4	16–20	A response in which the focus is largely sustained, with content that is mainly accurate and detailed. Relationships are identified and the answer is largely coherent. A range of natural processes/systems and environmental issues are described and articulated clearly. In most cases, these are applied appropriately to the question but, in some, it is less clear why they are relevant. Where conclusions are made, these are supported by judgements which are mostly coherent and relevant. Relevant environmental terminology is used consistently and throughout, with no more than minor errors.
3	11–15	A partial response which is focused in parts. The content is mostly accurate but not always detailed. There is an attempt at identifying relationships, but the answer as a whole is not fully coherent. A range of natural processes/systems and environmental issues are described, most are articulated clearly. In some cases, these are applied appropriately to the context but, in most, it is less clear why they are relevant. Where conclusions are made, it is not always clear how they relate to the judgments given and are likely to contain errors. Relevant environmental terminology is used, but not consistently and there may be errors.
2	6–10	 An unbalanced response, lacking in focus. The content may be inaccurate and lacking detail. There is some attempt at identifying relationships, but the answer is not coherent. A limited range of natural processes/systems and environmental issues are described but not articulated clearly and likely to contain errors and/or omissions. There is a limited attempt to apply them to the context. Any conclusions are likely to be asserted, with no supporting judgements and fundamental errors. Environmental terminology is used, but not always appropriately and sometimes with clear errors.
1	1–5	 Fragmented points, whose relevance to the question and relationships to each other are unclear. A few natural processes/systems and environmental issues are listed, but unlikely to be described and many may be irrelevant. There is no clear attempt to apply them to the context. It is unlikely that a conclusion will be present. There is an attempt to use environmental terminology, but seldom appropriately.

	0	Nothing written worthy of credit.
--	---	-----------------------------------