Surname
Forename(s)
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
A-level

## DESIGN AND TECHNOLOGY: PRODUCT DESIGN

Paper 2 Designing and Making Principles

7552/2
Friday 16 June 2023 Morning
Time allowed: 1 hour 30 minutes
[Turn over]


At the front of this book, write your surname and forename(s), your centre number, your candidate number and add your signature.

## MATERIALS

For this paper you must have:

- normal writing and drawing materials
- a scientific calculator.


## INSTRUCTIONS

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.


## INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- There are 30 marks for SECTION A and 50 marks for SECTION B.

DO NOT TURN OVER UNTIL TOLD TO
DO SO


## SECTION A - PRODUCT ANALYSIS

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- |

FIGURES 1 and 2 show two wheelbarrows.

FIGURE 1


## 5

FIGURE 2


## [Turn over]

|  | FIGURE 1 | FIGURE 2 |
| :--- | :--- | :--- |
| Wheel | Rotationally <br> moulded <br> hollow <br> spherical <br> HDPE tyre | Low carbon <br> steel hub with <br> rubber tyre |
| Bucket | Injection <br> moulded <br> HDPE | Press formed <br> powder coated <br> low carbon <br> steel |
| Frame | Powder <br> coated low <br> carbon steel | Powder <br> coated low <br> carbon steel |

Compare the suitability of the two wheelbarrows shown for use on a building site. [6 marks]
$\qquad$
$\qquad$


## 7

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
[Turn over]


\section*{| 0 | 2 |
| :--- | :--- |}

FIGURE 3 shows a ramp for a wheelbarrow.

## FIGURE 3



All dimensions in mm
The maximum angle ( $x$ ) that a wheelbarrow can be safely pushed up is 20 degrees.

Calculate the length, $A B$, required to allow the wheelbarrow to be safely pushed up the ramp.

Give your answer to the nearest mm .
Show your working. [4 marks]


## 9

$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer

\section*{| 0 | 3 |
| :--- | :--- |}

TABLE 1, below and on the opposite page, shows the main stages involved in manufacturing a wheelbarrow.

The stages are listed in alphabetical order.

TABLE 1

| STAGE | DESCRIPTION | TIME <br> REQUIRED <br> (HOURS) |
| :--- | :--- | :--- |
| A | Attach wheel <br> assembly | 1 |
| B | Attach wheel <br> support brackets <br> to frame | 1 |
| C | Bend tubular steel <br> frame | 2 |


| D | Cut stock steel <br> tube to length for <br> tubular steel frame | 1 |
| :--- | :--- | :--- |
| E | Drill bucket using <br> template | 1 |
| F | Drill securing <br> holes in tubular <br> steel frame | 1 |
| G | Form bucket from <br> steel sheet | 2 |
| H | Produce bucket <br> former | 3 |
| I | Send bucket for <br> galvanising | 6 |
| J | Send frame for <br> powder coating | 15 |

[Turn over]

$$
\begin{aligned}
& \text { Using the information from TABLE 1, on pages } 10 \text { and 11, } \\
& \text { complete the Critical Path Network (CPN) diagram in } \\
& \text { FIGURE 4, on the opposite page, to show the correct order } \\
& \text { for completing the manufacture in the most time-efficient } \\
& \text { manner. [4 marks] }
\end{aligned}
$$




|  |
| :--- |
|  |
| [Turn over] |


\section*{| 0 | 4 |
| :--- | :--- | :--- |}

FIGURE 5 shows a powder coated low carbon steel frame for a wheelbarrow.

## FIGURE 5



Explain how jigs and templates may have been used to accurately produce multiple copies of the frame shown in FIGURE 5. [4 marks]

15
[Turn over]


\section*{| 0 | 5 |
| :--- | :--- | :--- |}

FIGURE 6 shows a CAD model of a component for a piece of flat pack furniture.

The component could be produced on a CNC router or by using wood machine wasting processes.

## FIGURE 6

Feature A:
Rebate


Feature C:
Counterbored hole


Compare and evaluate BOTH manufacturing methods for the three features labelled. [6 marks]
Feature A
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Feature B

## [Turn over]



Feature C
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## BLANK PAGE

## [Turn over]

20

## $0 \mid 6$

FIGURES 7 and 8 show two welding masks.

FIGURE 7 HAND HELD MASK


21

## FIGURE 8 HEAD MOUNTED MASK



## [Turn over]



22

|  | FIGURE 7 | FIGURE 8 |
| :--- | :--- | :--- |
| Method of <br> use | Held to face <br> with hand | Mounted over <br> head with <br> adjustable <br> strap |
| Screen | Translucent <br> green <br> polymer | Light-reactive <br> SMART <br> material |

Compare the suitability of BOTH masks for use when welding. [6 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


23
[Turn over]


24

## SECTION B COMMERCIAL MANUFACTURE

Answer ALL questions in this section.

07
Outline how designers make use of market research strategies when developing design concepts. [4 marks]
$\qquad$
$\qquad$

25

## [Turn over]



## 26

## 08

State FOUR safety precautions to be taken by the user when turning a wooden bowl on a wood lathe. [4 marks]

1 $\qquad$
$\qquad$
$\qquad$
2

$\qquad$
$\qquad$
3
$\qquad$

4
$\qquad$
$\qquad$

## 27

## $0 \mid 9$

A turned metal component is to be manufactured on a manual lathe.

Outline the information required to ensure it is accurately produced. [6 marks]
[Turn over]


## 28

## 10

A bracelet is made from resin where powder, liquid and pigment are mixed in the ratio of 2.5:4:1

The bracelet uses $\mathbf{2 8}$ grams less powder than liquid.

Calculate the total mass of the bracelet in grams.


29

## Show your working. [3 marks]

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer
grams
[Turn over]

ш
[Turn over]

32

|  | FIGURE 9 Disposable coffee cup | FIGURE 10 Reusable thermoplastic cup | FIGURE 11 Reusable stainless steel cup |
| :---: | :---: | :---: | :---: |
| CUP material | Laminated card | Polypropylene (PP) | Stainless steel |
| CUP production method | Die cutting and fabrication | Polymer forming techniques | Metal forming techniques |
| LID material | High Impact Polystyrene (HIPS) | Silicone | Transparent thermoplastic with rubber seal |


| LID <br> production <br> method | Vacuum <br> forming | Injection <br> moulding | Injection <br> moulding |
| :--- | :--- | :--- | :--- |
| Insulation <br> SLEEVE <br> material | Corrugated <br> cardboard | Silicone | No sleeve |

[Turn over]

34

| Analyse and evaluate the ENVIRONMENTAL IMPACT of all |
| :--- |
| THREE cups. |
| In your answer you should refer to: |
| - raw materials |
| - product manufacture |
| - disposal. |
| [12 marks] |

35

[Turn over]

36



| 1 2 <br> Describe THREE key characteristics of an effective design  <br> specification. [3 marks]  <br> 1  |
| :--- |


[Turn over]

1/3. 1
FIGURE 12 shows a packaging net.
FIGURE 12


The digital printing process means areas $A, B, C$ and $D$ can have a range of different designs applied independently.

AREA A: FIVE different designs
AREA B: SEVEN different designs
AREA C: FIVE different designs
AREA D: TWO different designs
Calculate the number of different design combinations possible.

Show your working. [2 marks]

## Answer

## [Turn over]

## 13. 3

A customer is collecting copies of each different package design and needs three more to complete the set.

Assume the design of AREA $B$ is known.
Calculate the probability that the package they receive will be one of the specific design combinations they require.

Show your working. [2 marks]

Answer


\section*{| 1 | 4 |
| :--- | :--- |}

Name TWO specific measuring devices that can be used to ensure components conform to acceptable tolerances. [2 marks]
1
$\qquad$
$\qquad$
2
2
$\qquad$
$\qquad$

## 42

| 1 | 5 |
| :--- | :--- |

FIGURE 13 shows a carbonated drinks bottle.

## FIGURE 13



## 43

Identify and explain THREE specific dimensional quality control checks needed to ensure the carbonated drinks bottle can be filled and sealed correctly. [6 marks]
1 $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

2
$\qquad$
$\qquad$
$\qquad$
$\qquad$
[Turn over]


44

3
$\qquad$
$\qquad$
$\qquad$


45

### 1.6. 1

Define the terms 'ergonomics' and 'anthropometrics'. [2 marks]

## 16.2

State ONE way that a product with good ergonomics can benefit the product user. [1 mark]

## 17

FIGURES 14 and 15 show two products designed by Dieter Rams.

FIGURE 14


## FIGURE 15



## 47

Describe how the products shown in FIGURES 14 and 15 conform to the principles of modernist design. [3 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

END OF QUESTIONS

48

|  | Additional page, if required. <br> Write the question numbers in the <br> left-hand margin. |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

49
Additional page, if required. Write the question numbers in the left-hand margin.
$\qquad$

## 50

## BLANK PAGE

## Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

## WP/M/CD/Jun23/7552/2/E3



