AQA

Level 2 Certificate
 FURTHER MATHEMATICS

Formulae Sheet 8365

Insert

FOR EXAMS IN JUNE 2023 ONLY
[Turn over]

PERIMETER, AREA AND VOLUME

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

Area of a trapezium $=\frac{1}{2}(a+b) h$
Volume of a prism $=$ area of cross section \times length
Where r is the radius and d is the diameter:
Circumference of a circle $=2 \pi r=\pi d$
Area of a circle $=\pi r^{2}$

QUADRATIC FORMULA

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

PYTHAGORAS' THEOREM AND TRIGONOMETRY

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:
$a^{2}+b^{2}=c^{2}$
In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:
$\sin A=\frac{a}{c}$
$\cos A=\frac{b}{c}$
$\tan A=\frac{a}{b}$
[Turn over]

In any triangle $A B C$ where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$
For any angle $\theta \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$
and $\sin ^{2} \theta+\cos ^{2} \theta=1$

COORDINATE GEOMETRY

Equation of a straight line passing through $\left(x_{1}, y_{1}\right)$ with gradient m
$y-y_{1}=m\left(x-x_{1}\right)$

The general equation of a circle, centre (a, b), radius r $(x-a)^{2}+(y-b)^{2}=r^{2}$

BLANK PAGE

Copyright © 2023 AQA and its licensors. All rights reserved.

