AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

Thursday 8 June 2023

Morning

Materials

For this paper you must have:

- mathematical instruments
- the Formulae Sheet (enclosed).

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more graph paper and tracing paper. These must be tagged securely to this answer book.

Answer

Answer

3 (a) Circle the transformation matrix that represents a reflection in the line $y=-x$

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

3 (b) Show that

$$
\left(\begin{array}{cc}
2 & 4 \\
-1 & -3
\end{array}\right)\left(\begin{array}{cc}
-3 & -4 \\
1 & 2
\end{array}\right)=k \mathbf{I} \quad \text { where } k \text { is an integer. }
$$

$4 \quad S(7,2)$ and $T(5,-4)$ are points on a straight line. $\quad |$| Do not write |
| :---: |
| outside the |
| box |

Answer

4 (b) Work out the distance between S and T.
Give your answer in the form $a \sqrt{b}$ where a and b are both integers greater than 1
$5 \quad X_{n}$ and Y_{n} are the nth terms of two sequences.

$$
\begin{aligned}
& X_{n}=(n-1)(n+1) \\
& Y_{n}=(n+1)(n+2)
\end{aligned}
$$

Prove that every term of the sequence with nth term $\quad Y_{n}-X_{n}$ is a multiple of 3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question
\qquad
Work out the equation of the tangent to the curve at the point $(1,-2)$
Give your answer in the form $y=m x+c$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

7 The diagram below shows a cone and a prism.
All measurements are in cm
The cone has base radius r and perpendicular height x.
The prism has a triangular cross section with base y and perpendicular height y.
The length of the prism is x.

Volume of a cone $=\frac{1}{3} \times$ area of base \times perpendicular height
The volume of the cone is four times the volume of the prism.
Express r in terms of y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $r=$ \qquad
8 A circle has centre $(0,0)$ and radius 5
A straight line has equation $2 y=x+5$
Work out the coordinates of the two points where the circle and straight line intersect.
Do not use trial and improvement.
You must show your working.
\qquad

Answer (\qquad , \qquad) and (\qquad , \qquad)

9 Rearrange $w=\frac{y^{2}+5}{y^{2}-2} \quad$ to make y the subject.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

10 Rationalise the denominator and simplify fully

$$
\frac{1+\sqrt{5}}{3-\sqrt{5}}
$$

\qquad

Answer
$11 \begin{aligned} & y=\frac{1}{12} x^{4}+3 x^{2}+4 \\ & \text { Work out the positive value of } x \text { for which } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=55\end{aligned},=$,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x=$ \qquad

Turn over for the next question
12 (a) Write down the value of x for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ when $\sin x=-1$

$$
x=
$$

12 (b) Work out the values of y for $0^{\circ} \leqslant y \leqslant 360^{\circ} \quad$ when $\quad \sqrt{3} \tan y=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
13 Write $\quad \frac{2 x-3}{x}-\frac{1}{3 x}+1 \quad$ as a single fraction.

Give your answer in its simplest form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

15 Solve $\left(x^{\frac{1}{2}}-x^{\frac{3}{2}}\right)^{2}=x^{2}+x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

16 The expansions of $(1+12 x)^{4}$ and $(a+4 x)^{3} \quad$ have the same coefficient of x^{2} Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

17 The curve $y=a x^{3}+b x^{2}+7$ has a stationary point at $(-2,11)$ Work out the values of a and b.
\qquad
\qquad $a=$ \qquad $b=$ \qquad

18 Solve the simultaneous equations

$$
\begin{aligned}
& 2 x+y=13 \\
& x+3 z=2 \\
& z-2 y=-7
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
\qquad $x=$ \qquad $y=$ \qquad $z=$ \qquad
$19 \quad 8 x^{2}+20 x+n \equiv c(x+d)^{2}+3 \quad$ where c, d and n are constants.
Work out the values of c, d and n.
\qquad

$$
c=\quad d=\quad n=
$$

$20 \quad P, Q$ and R are points on a circle, centre O.
Angle $P O R=120^{\circ} \quad P Q=4 \mathrm{~cm} \quad Q R=5 \mathrm{~cm}$

Not drawn accurately

Work out the radius of the circle.
Give your answer in the form \sqrt{k} where k is an integer.
\qquad

Answer \qquad cm

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

