AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

Level 2 Certificate FURTHER MATHEMATICS

Paper 2 Calculator

Wednesday 21 June 2023

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more graph paper and tracing paper.

Time allowed: 1 hour 45 minutes

These must be tagged securely to this answer book.

- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
22	
TOTAL	

$$
d=
$$

Answer
\qquad

Answer

$3 \quad\left(\begin{array}{ll}3 & 5 \\ u & 2\end{array}\right)\binom{1}{4}=\binom{t}{6}$
Work out the values of t and u.

$$
t=\square \quad u=
$$

$4 \quad$ A line passes through $P(1, k)$ and $Q(r, 6)$ where k and r are constants.
The midpoint of $P Q$ has x-coordinate 5
The gradient of the line is 2
Work out the value of k.
\qquad
$k=$ \qquad
\qquad
Work out the value of x for which the rate of change of y with respect to x is 6.75
[3 marks]
$x=$ \qquad
$6 \quad$ The equation of a circle is $(x+7)^{2}+(y-4)^{2}=36$ Complete these statements.

The coordinates of the centre of the circle are (\qquad , \qquad)

The radius of the circle is \qquad
$7 \quad$ Here is a sketch of the curve $y=a x^{2}+b x+c \quad$ where a, b and c are constants.
The curve intersects the x-axis at $(-4,0)$ and $(p, 0)$
The turning point has x-coordinate 0.5

7 (a) Work out the value of p.
\qquad

$$
p=
$$

\qquad

7 (b) Solve $a x^{2}+b x+c>0$
\qquad
\qquad

Answer \qquad
$8 \quad A B C$ is a triangle with perpendicular height $A D$.

Not drawn accurately

Area of $A B C=25 \mathrm{~cm}^{2}$
$B D: D C=2: 3$
Work out the size of angle w.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$w=$ \qquad。
$9 \quad$ The dimensions of the cuboid are given in centimetres.

The total length of all 12 edges is 300 cm

9 (a) Show that $y=\frac{75-6 x}{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 Line K has equation $4 x-5 y=17$
Line L passes through the points $(3,6)$ and $(-5,16)$
Tick (\checkmark) the correct statement about lines K and L .

The lines are parallel.

The lines are perpendicular.

The lines are neither parallel nor perpendicular.

Show working to support your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 Expand and simplify fully $\left(2 x^{3}-9\right)\left(3 x^{2}+4\right)+x(x-4)^{2}$
\qquad

Answer \qquad

Turn over for the next question
$12 \quad V A B C D$ is a pyramid.
The square horizontal base, $A B C D$, has side length 15 cm
V is directly above the centre, X, of the base.
$V A=28 \mathrm{~cm}$

Work out the size of the angle that $V A$ makes with $A B C D$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13 (a) Circle the expression equivalent to $3 x^{-7}$

$$
\begin{array}{llll}
-\frac{3}{x^{7}} & -\frac{1}{3 x^{7}} & \frac{1}{3 x^{7}} & \frac{3}{x^{7}}
\end{array}
$$

13 (b) Simplify fully $\frac{12 w^{8}}{\left(4 w^{3}\right)^{2}}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

13 (c) $\sqrt{y} \times \sqrt[3]{y}=\sqrt[c]{y^{d}} \quad$ where c and d are positive integers.
Work out the least possible values of c and d.
\qquad
\qquad
\qquad
\qquad
$c=$ \qquad $d=$ \qquad

14 Simplify fully $\frac{15 a^{2}}{a^{2}+6 a-16} \times \frac{8-4 a}{3 a}$
\qquad

Answer \qquad

15 The function g is given by $\mathrm{g}(x)=a \times b^{x} \quad$ where a and b are constants.
The domain of the function is $-1 \leqslant x \leqslant 2$
$P\left(0, \frac{1}{2}\right)$ and $Q\left(1, \frac{3}{2}\right)$ are points on the graph $y=g(x)$

Not drawn accurately
accurately

Work out the range of the function.
\qquad

Answer \qquad

Solve $\quad 6 x^{3}-25 x^{2}+28 x-6=0$
Give all solutions as exact values.
\qquad

Answer \qquad

17 The function h is given by $\mathrm{h}(x)=a x\left(3 x^{2}-2\right)+5 x \quad$ where a is a positive constant. h is an increasing function for all values of x.

Work out the possible values of a.
Give your answer as an inequality.
\qquad

Answer \qquad

Turn over for the next question

18 Here is a sketch of $y=\cos x$ for values of x from 0° to 360° α is an obtuse angle measured in degrees. $\cos \alpha=-k \quad$ where k is a positive constant.

18 (a) Tick (\checkmark) two boxes that show expressions for x where $\cos x=-k$

18 (b) Circle the expression for x where $\sin x=-k$

$$
90^{\circ}+\alpha
$$

$$
180^{\circ}-\alpha
$$

$$
180^{\circ}+\alpha
$$

19 In these simultaneous equations, k is a positive constant.

$$
\begin{aligned}
3 x+4 y & =k \\
y & =2 k x
\end{aligned}
$$

Solve the simultaneous equations.
Give the answers in their simplest form in terms of k.
\qquad

$$
x=
$$ $y=$ \qquad

20 Show that

$2 \sin ^{3} x+2 \sin x \cos ^{2} x+5 \tan x \cos x \quad$ simplifies to $\quad p \sin x \quad$ where p is a constant.
[3 marks]
\qquad
$21 A, B, C, D$ and E are points on a circle, centre O.

Not drawn accurately

Work out the value of x.
\qquad
$x=$ \qquad

22 Five-digit integers are made using
1
2
7
8
9
2

For each integer, all the digits are used exactly once.
The integers are
greater than 40000 and odd.
How many different integers can be made?
You must show your working.
You must show your working
\qquad

Answer \qquad

END OF QUESTIONS

There are no questions printed on this page
DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2023 AQA and its licensors. All rights reserved.

