Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/
		1

GCSE CHEMISTRY

Foundation Tier Paper 1

Monday 22 May 2023

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0 1	This question is about atoms.	Do not write outside the box
	Atoms contain three types of particle: • electrons • neutrons • protons.	
01.1	Which particle has no electrical charge? [1 mark] Tick (✓) one box.	
	Electron	
	Neutron	
	Proton	
01.2	Which particles have the same relative mass? Tick (✓) one box. An electron and a neutron An electron and a proton A neutron and a proton	
01.3	The formula of a compound is N ₂ O How many of each type of atom are in one molecule of N ₂ O? [2 marks] Nitrogen Oxygen	

	An atom of element Z contains: • 3 electrons	Do not write outside the box
	4 neutrons	
	3 protons.	
01.4	Give the name of element Z. Use the periodic table. [1 mark]	
0 1.5	Complete Figure 1 to show the position of the particles in an atom of element Z .	
	Use the symbols: × = electron • = neutron O = proton	
	[4 marks] Figure 1	
	Nucleus	9
	Turn over for the next question	

02	This question is about ac	ids and alkalis.	Do not write outside the box
02.1	Acids and alkalis are sub Draw one line from each aqueous solution.	stances that produce ions in aqueous solution. substance to the ion always produced by that substance in [2 marks]	
	Substance	lon always produced in aqueous solution	
		Cl⁻	
	Acid] H ⁺	
		Na⁺	
	Alkali	OH-	
		SO4 ²⁻	
02.2	What type of aqueous so Tick (✓) one box.	lution has a pH of 11? [1 mark]	
	Acidic		
	Alkaline		
	Neutral		
	Question	2 continues on the next page	

Turn over ►

		D
	A student determined the reacting volumes of hydrochloric acid and sodium hydroxide solution by titration.	Do not write outside the box
	This is the method used.	
	1. Measure 25.0 cm ³ of the sodium hydroxide solution.	
	2. Add the sodium hydroxide solution to a conical flask.	
	3. Add 3 drops of indicator to the sodium hydroxide solution.	
	4. Add the hydrochloric acid drop by drop until the indicator changes colour.	
	5. Record the volume of the hydrochloric acid added.	
	6. Repeat steps 1 to 5 three more times.	
02.3	Which piece of equipment should be used to measure 25.0 cm ³ of the sodium hydroxide solution in step 1?	
	[1 mark] Tick (✓) one box.	
	Beaker	
	Pipette	
	Ruler	
02.4	Which piece of equipment should be used to add the hydrochloric acid drop by drop in step 4?	
	[1 mark] Tick (✓) one box.	
	Balance	
	Burette	
	Measuring cylinder	

	Table 1 shows the results.					
	Tab	ole 1				
	Trial	1	2	3	4	
	Volume of hydrochloric acid added in cm ³	24.3	24.5	28.1	24.4	
02.5	Which is the anomalous result in Ta	ble 1?			[1 ma	rk]
	Trial 1 Trial 2	Trial 3		Trial 4		
02.6	Suggest one reason for the anomalous result in Table 1 . [1 mark]					
0 2.7	The student used a solution of sodiu	um hydroxid	e of concen	tration 4.00	g/dm³.	
02.7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	um hydroxid xide in 25.0	e of concen cm ³ of this	tration 4.00 solution.	g/dm³.	
02.7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	um hydroxid xide in 25.0	e of concen cm³ of this	tration 4.00 solution.	g/dm³. [3 mar l	ks]
02.7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	um hydroxid xide in 25.0	e of concen cm ³ of this	tration 4.00 solution.	g/dm³. [3 marl	ks]
0 2.7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	um hydroxid xide in 25.0	e of concen cm ³ of this	tration 4.00 solution.	g/dm³. [3 marl	ks]
0 2 . 7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	ım hydroxid xide in 25.0	e of concen cm ³ of this	tration 4.00 solution.	g/dm³. [3 marl	ks]
02.7	The student used a solution of sodiu Calculate the mass of sodium hydro 1 dm ³ = 1000 cm ³	um hydroxid xide in 25.0	e of concen cm ³ of this	tration 4.00 solution.	g/dm ³ . [3 mar l	ks]

		Do not write
0 3	This question is about carbon.	outside the box
0 3.1	Which type of substance is carbon?	
	Tick (✓) one box.	
	Compound	
	Element	
	Mixture	
0 3.2	Carbon has isotopes with mass numbers 12, 13 and 14.	
	Complete the sentences.	
	Choose answers from the box.	
	electrons ions molecules neutrons protons	
	The isotopes of carbon have the same number of	
	The isotopes of carbon have the same number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have the same number of The isotopes of carbon have a different number of	
	The isotopes of carbon have a different number of The isotopes of carbon have a different number of	

Turn over ►

04.3	Describe what happens to the melting point of the solder as the percentage by mass of tin increases.	Do not write outside the box
	Use data from Figure 5. [3 marks	\$]
		_
		_
		_
04.4	What is the melting point of pure tin?	
	Use Figure 5. [1 mar	k]
	Melting point of pure tin =°	c
04.5	What happens to the atoms in pure tin as the tin melts? Tick (✓) one box.	k]
	The atoms gain energy and their arrangement becomes less ordered.	
	The atoms gain energy and their arrangement becomes more ordered.	
	The atoms lose energy and their arrangement becomes less ordered.	
	The atoms lose energy and their arrangement becomes more ordered.	10

0 5	This question is about small particles.	Do not write outside the box
0 5.1	Which type of particle is often referred to as dust? [1 mark] Tick (✓) one box.	
	Coarse particle	
	Fine particle	
	Nanoparticle	
0 5.2	A spherical coarse particle has a diameter of 4000 nm.	
	A spherical fine particle has a diameter of 200 nm.	
	How many times larger is the diameter of the coarse particle than the diameter of the	
	Tine particle? [1 mark]	
	Tick (✓) one box.	
	2 times	
	5 times	
	20 times	
	50 times	
		1

box

	Titanium oxide is used in some sun creams.	Do not write outside the box
05.4	Which is an advantage of using nanoparticles of titanium oxide rather than normal-sized particles of titanium oxide in sun creams? [1 mark] Tick (✓) one box.	
	A smaller mass of nanoparticles is needed to be effective. Nanoparticles cost more than the same mass of normal-sized particles.	
	Nanoparticles have a lower surface area to volume ratio than normal-sized particles.	
0 5 5	Titanium oxide contains Ti ⁴⁺ ions and Ω^{2-} ions	
	What is the formula of titanium oxide? [1 mark] Tick (✓) one box.	
	TiO ₂ TiO ₄ Ti ₂ O Ti ₄ O ₂	8

06	This question is about metals.	Do not write outside the box
06.1	Platinum is used to make jewellery. Suggest one reason why platinum is used to make jewellery. [1 mark]	-
06.2	Figure 7 shows a piece of sodium being added to water. Figure 7 Sodium	-
	Water Give two observations that could be seen when sodium is added to water. [2 marks]	-
		-
	Question 6 continues on the next page	

Do not write outside the 0 6.3 Copper is a transition element. Sodium is a Group 1 element. What are two differences between copper and sodium? [2 marks] Tick (✓) **two** boxes. Copper has a lower melting point. Copper is harder. Copper is less dense. Copper is less reactive.

Copper is less strong.

box

 Table 2 shows information about the two metals.

The higher the value for thermal conductivity, the better the metal conducts thermal energy.

Table 2

	Aluminium	Copper
Thermal conductivity in arbitrary units	250	400
Density in g/cm ³	2.7	8.9
Cost of metal per kg in £	1.50	7.00

Evaluate the use of pans made of aluminium and of copper.

Use Table 2.

[4 marks]

Do not write outside the

box

9

0 7	This question is a	bout ionic compounds and electro	olysis.	Do not write outside the box	
	Sodium chloride is an ionic compound.				
0 7.1	Figure 8 represents part of the structure of solid sodium chloride.				
	Figure 8				
	 Key ○ Na⁺ ion ● Cl⁻ ion 				
	Complete Figure	8.	[2 marks]		
0 7.2	0 7 . 2 Give one reason why molten sodium chloride conducts electricity.				
	Refer to ions in your answer. [1 mark]				
0 7.3	Table 3 shows p	oducts of the electrolysis of two n	nolten ionic compounds.		
	Complete Table 3. [2 marks]				
		Table 3			
Molten compoundProduct at the negative electrodeProduct at the positive electrode		Product at the positive electrode			
Magnesiu	um bromide	Magnesium			
Potassiur	Potassium chloride				

07.4	Aluminium is extracted by electrolysis. The electrolyte is a molten mixture of aluminium oxide and cryolite.	Do not write outside the box
	Why is a mixture used instead of pure aluminium oxide as the electrolyte? [1 mark] Tick (✓) one box.	
	The mixture has a lower melting point than pure aluminium oxide.	
	The mixture has the same melting point as pure aluminium oxide.	
	The mixture has a higher melting point than pure aluminium oxide.	
0 7.5	Electrolysis of an aqueous solution of sodium sulfate produces hydrogen and oxygen.	
	What is the source of the hydrogen and the oxygen produced during the electrolysis of aqueous sodium sulfate solution?	
	Tick (✓) one box.	
	Air	
	Sulfate ions	
	Water	
	Question 7 continues on the next page	

0 8	This question is about displacement reactions.	Do not write outside the box
	Iron is extracted from iron oxide by a displacement reaction with carbon.	
08.1	Balance the equation for the reaction. [2 mark	(S]
	$Fe_2O_3 + 3C \rightarrow Fe + CO$	
08.2	Iron oxide is reduced in this reaction.	
	How does the equation show that iron oxide is reduced? [1 mail	rk]
083	Calculate the relative formula mass (M_1) of Ee ₂ O ₂	
	Relative atomic masses (A_r): O = 16 Fe = 56 [2 mark]	(5]
		_
	<i>M</i> _r =	_
	Question 8 continues on the next page	

0 8.4	Copper oxide reacts with hydrogen to produce copper.	Do not write outside the box
	The equation for the reaction is:	
	$CuO + H_2 \rightarrow Cu + H_2O$	
	Calculate the percentage atom economy for obtaining copper from this reaction.	
	Use the equation: A _r of Cu	
	Percentage atom economy = $\frac{1}{M_r}$ of H ₂ + M_r of CuO × 100	
	Relative atomic mass (A_r): Cu = 63.5 Relative formula masses (M_r): H ₂ = 2 CuO = 79.5 [2 marks]	
	Percentage atom economy =%	
	A student investigated the reactivity of four different metals, A , B , C and D .	
	The student:	
	 added each metal to aqueous solutions of each of the metal suitates observed whether a reaction took place. 	
08.5	Give one observation that would show a reaction took place. [1 mark]	
	[]	

0 8. **6 Table 4** shows the results.

Metal A sulfate B sulfate C sulfate D sulfate A × × ✓ × B ✓ × ✓ × C × × ✓ × D ✓ ✓ ✓ × ✓ × × × × Ø ✓ ✓ ✓ × Ø ✓ ✓ ✓ × Ø ✓ ✓ ✓ × Ø ✓ ✓ ✓ × ✓ shows that a displacement reaction took place. × × ✓ shows that a displacement reaction did not take place. × × Write metals A, B, C and D in order of reactivity. Give a reason for your order of reactivity. Most reactive			Metal sulfa	ate solution	
A × × ✓ × B ✓ × ✓ × C × × × × × D ✓ ✓ ✓ × × J ✓ ✓ ✓ × × J ✓ ✓ ✓ ✓ × J ✓ ✓ ✓ ✓ × J ✓ ✓ ✓ ✓ × J ✓ ✓ ✓ ✓ × J ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Shows that a displacement reaction did not take place. Write metals A, B, C and D in order of reactivity.	Metal	A sulfate	B sulfate	C sulfate	D sulfate
B Image: Mark and the second seco	Α	×	×	\checkmark	×
C × × × × × D ✓ ✓ ✓ ✓ × J ✓ ✓ ✓ ✓ × <td>В</td> <td>\checkmark</td> <td>×</td> <td>\checkmark</td> <td>×</td>	В	\checkmark	×	\checkmark	×
Image: D Image: Jmage: Jma	С	×	×	×	×
 ✓ shows that a displacement reaction took place. × shows that a displacement reaction did not take place. Write metals A, B, C and D in order of reactivity. Give a reason for your order of reactivity. Most reactive Least reactive 	D	\checkmark	\checkmark	\checkmark	×
	Most read	ctive			
Reason	Least rea				

Turn over ►

[2 marks]

10

09	Discoveries in chemistry led to a better understanding of atomic structure.	Do not write outside the box
09.1	Atoms were originally thought to be tiny spheres that could not be divided.	
	The plum pudding model of the atom was then developed.	
	Figure 10 represents the plum pudding model of the atom.	
	Figure 10	
	Describe the plum pudding model of the atom. [2 marks]	
09.2	Atoms contain electrons, neutrons and protons.	
	Write these three particles in order of their discovery. [1 mark]	
	Earliest	
	Latest	

	Very few atoms of the element tennessine (Ts) have ever been identified.	Do not write outside the box
	The atomic number of tennessine is 117	
09.3	Predict the number of outer shell electrons in an atom of tennessine. Give one reason for your answer. Use the periodic table. [2 marks] Number of outer shell electrons Reason	
09.4	Tennessine was first identified by a small group of scientists in 2010. Suggest one reason why tennessine was not accepted as a new element by other scientists until 2015. [1 mark]	
	Question 9 continues on the next page	

09.5

5 The discovery of isotopes explained why some relative atomic masses are not whole numbers.

Element **R** has two isotopes.

Table 5 shows the mass numbers and percentage abundances of the isotopes of element **R**.

lable 5

Mass number	Percentage abundance (%)
6	7.6
7	92.4

Calculate the relative atomic mass (A_r) of element **R**.

Give your answer to 1 decimal place.

[3 marks]

Relative atomic mass (1 decimal place) = _

Do not write outside the

box

1 0	This question is about temperature	changes.	Do not w outside t box			
	A student investigated the change i of ammonium nitrate were dissolve	in temperature of a solution when different masses d in water.				
	This is the method used.					
	1. Measure 200 cm ³ of water into a	polystyrene cup.				
	2. Measure the temperature of the	water.				
	3. Add 4.0 g of ammonium nitrate to	o the water.				
	4. Stir the solution until all the amm	onium nitrate has dissolved.				
	5. Measure the lowest temperature	reached by the solution.				
	6. Repeat steps 1 to 5 with different	t masses of ammonium nitrate.				
	Give the independent variable and the dependent variable in the investigation. [2 marks] Independent variable					
	Dependent variable					
	Table 6 shows the results.					
	Та	ble 6				
	Mass of ammonium nitrate added in grams	Lowest temperature of solution in °C				
	4.0	18.2				
	8.0	16.2				
	12.0	15.2				
	16.0	13.6				
	20.0	12.4				
	24.0	10.6				

	The student repe	eated the exp	periment three	e more times			
Table 7 shows the results for 8.0 g of ammonium nitrate.							
			Table 7				
		Trial 1	Trial 2	Trial 3	Trial 4	Mean	
Lowe of sol	st temperature ution in °C	16.2	16.6	16.8	16.4	16.5	
1 0.5	The student reco	orded the me	an lowest ter	nperature of	the solution f	or 8.0 g of	
	ammonium nitra	te as 16.5 ± (0.3 °C.				
	Explain why the	student inclu	ded ± 0.3 °C	after the me	an lowest ten	nperature. [2 m	narks
1 0.6	What type of erro	or is shown b	y the results	in Table 7 ?		[1	marl
	Tick (✓) one box	κ.					marr
	Random error						
	Systematic error						
	Zero error						

Do not write outside the box

1 1	This question is about making a soluble salt.	Do not write outside the box
11.1	Plan a method to make pure, dry crystals of zinc chloride from zinc carbonate and a	
	[6 marks]	
	·	
1 1.2	Name two other substances that can each be reacted with a dilute acid to make zinc chloride.	
	Do not refer to zinc carbonate in your answer.	
	[2 marks]	
	2	8
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

