Surname
Forename(s)
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 CHEMISTRY

F
Foundation Tier Paper 1 8462/1F

Monday 22 May 2023 Morning
Time allowed: 1 hour 45 minutes
[Turn over]

2

BLANK PAGE

At the front of this book, write your surname and forename(s), your centre number, your candidate number and add your signature.

MATERIALS

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).
[Turn over]

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

5

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO
DO SO

\section*{| 0 | 1 |
| :--- | :--- |}

This question is about atoms.
Atoms contain three types of particle:

- electrons
- neutrons
- protons.

0	1

Which particle has no electrical charge? [1 mark]

Tick (\checkmark) ONE box.

Electron

Neutron

Proton

Which particles have the same relative mass? [1 mark]

Tick (\checkmark) ONE box.

An electron and a neutron

An electron and a proton

A neutron and a proton
[Turn over]

\section*{| 0 | 1 | 3 |
| :--- | :--- | :--- |}

The formula of a compound is $\mathbf{N}_{2} \mathbf{O}$

How many of each type of atom are in one molecule of $\mathrm{N}_{2} \mathrm{O}$? [2 marks]

Nitrogen
Oxygen

9

An atom of element Z contains:

- 3 electrons
- 4 neutrons
- 3 protons.

\section*{| 0 | 1. |
| :--- | :--- |}

Give the name of element Z.
Use the periodic table. [1 mark]

[Turn over]

0	1	5

Complete FIGURE 1, on the opposite page, to show the position of the particles in an atom of element Z.

Use the symbols:
\times = electron

- = neutron
o = proton
[4 marks]

FIGURE 1

\section*{| 0 | 2 |
| :--- | :--- |}

This question is about acids and alkalis.

0	2

Acids and alkalis are substances that produce ions in aqueous solution.

On the opposite page, draw ONE line from each substance to the ion always produced by that substance in aqueous solution. [2 marks]

Ion always produced in aqueous solution

Cl^{-}

Acid

H^{+}

Na^{+}

Alkali

OH^{-}

$$
\mathrm{SO}_{4}{ }^{2-}
$$

[Turn over]

What type of aqueous solution has a pH of 11? [1 mark]

Tick (\checkmark) ONE box.

Acidic

Alkaline

Neutral

BLANK PAGE

[Turn over]

A student determined the reacting volumes of hydrochloric acid and sodium hydroxide solution by titration.

This is the method used.

1. Measure 25.0 cm3 of the sodium hydroxide solution.
2. Add the sodium hydroxide solution to a conical flask.
3. Add 3 drops of indicator to the sodium hydroxide solution.
4. Add the hydrochloric acid drop by drop until the indicator changes colour.
5. Record the volume of the hydrochloric acid added.
6. Repeat steps 1 to 5 three more times.

\section*{| 0 | 2 | 3 |
| :--- | :--- | :--- |}

Which piece of equipment should be used to measure $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide solution in step 1? [1 mark]

Tick (\checkmark) ONE box.

Beaker

Pipette

Ruler
[Turn over]

0 2. 4

Which piece of equipment should be used to add the hydrochloric acid drop by drop in step 4? [1 mark]

Tick (\checkmark) ONE box.

Balance

Burette

Measuring cylinder

BLANK PAGE

[Turn over]

20

TABLE 1 shows the results.

TABLE 1

Trial	1	2	3	4
Volume of hydrochloric acid added in cm^{3}	24.3	24.5	28.1	24.4

\section*{| 0 | 2 |
| :--- | :--- |
| 5 | |}

Which is the anomalous result in TABLE 1? [1 mark]

Tick (\checkmark) ONE box.

\square Trial 3

0	2

Suggest ONE reason for the anomalous result in TABLE 1. [1 mark]

[Turn over]

22

\section*{| 0 | 2 |
| :--- | :--- |
| 7 | |}

The student used a solution of sodium hydroxide of concentration $4.00 \mathrm{~g} / \mathrm{dm}^{3}$.

Calculate the mass of sodium hydroxide in $25.0 \mathrm{~cm}^{3}$ of this solution.
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Mass =
g

23

$0 \mid 3$

This question is about carbon.

0	3	1

Which type of substance is carbon? [1 mark]

Tick (\checkmark) ONE box.

Compound

Element

Mixture
[Turn over]

Carbon has isotopes with mass numbers 12, 13 and 14.

Complete the sentences.
Choose answers from the list. [2 marks]

- electrons
- ions
- molecules
- neutrons
- protons

The isotopes of carbon have the same number of

The isotopes of carbon have a different number of \qquad -

25

0	3	3

12 g of carbon contains 6.02×10^{23} atoms.
Which expression is used to calculate the mass of one atom of carbon? [1 mark]

Tick (\checkmark) ONE box.

12
6.02×10^{23}

6.02×10^{23}
12

$12 \times 6.02 \times 10^{23}$
[Turn over]

26

\section*{| 0 | 3 |
| :--- | :--- | :--- |}

FIGURE 2, on the opposite page, shows diagrams that represent different forms of carbon.

Which diagram in FIGURE 2 represents Buckminsterfullerene? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

FIGURE 2

A

B

C

[Turn over]

28

\section*{| 0 | 3 |
| :--- | :--- |}

FIGURE 3 represents part of the structure of graphite.

FIGURE 3

On the opposite page, draw ONE line from each property of graphite to the structural feature that is the reason for that property. [2 marks]

29

PROPERTY

Graphite conducts electricity.

STRUCTURAL

 FEATUREGraphite has hexagonal rings of carbon atoms.

The bonds between carbon atoms in the layers are strong.

Graphite is soft.

There are no covalent bonds between layers of atoms.

There are delocalised electrons in graphite.

\section*{| 0 | 4 |
| :--- | :--- | :--- |}

This question is about alloys.
Solders are alloys of tin and lead.
Different solders have different percentages of tin and lead.

FIGURE 4 shows the arrangement of atoms in pure tin and in a solder.

FIGURE 4

Pure tin

Solder

KEY
Tin atom
Lead atom

\section*{| 0 | 4 | 1 |
| :--- | :--- | :--- |}

The solder in FIGURE 4 has 6 lead atoms for every 24 tin atoms.

Determine the percentage of atoms that are lead atoms in the solder in FIGURE 4. [3 marks]
\qquad
\qquad
\qquad
\qquad

Percentage of lead atoms =
[Turn over]

0	4

Explain why solder is harder than pure tin.

Complete the sentences.
Use FIGURE 4, on page 30. [2 marks]

In solder the layers are distorted.
This is because the atoms of tin and lead have different

Therefore the layers cannot easily

BLANK PAGE

[Turn over]

FIGURE 5, on the opposite page, shows how the melting point of the solder changes with the percentage by mass of tin in the solder.

0	4	3

Describe what happens to the melting point of the solder as the percentage by mass of tin increases.

Use data from FIGURE 5. [3 marks]
\qquad
\qquad
\qquad
\qquad

FIGURE 5
 Melting point of
 the solder in ${ }^{\circ} \mathrm{C}$

||l||||||||| [Turn over]

REPEAT OF FIGURE 5
Melting point of
the solder in ${ }^{\circ} \mathrm{C}$

What is the melting point of pure tin?

Use FIGURE 5. [1 mark]

Melting point of pure tin $=$
${ }^{\circ} \mathrm{C}$

[Turn over]

\section*{| 0 | 4 | 5 |
| :--- | :--- | :--- |}

What happens to the atoms in pure tin as the tin melts? [1 mark]

Tick (\checkmark) ONE box.

The atoms gain energy and their arrangement becomes less ordered.
\square The atoms gain energy and their arrangement becomes more ordered.
\square The atoms lose energy and their arrangement becomes less ordered.

The atoms lose energy and their arrangement becomes more ordered.

BLANK PAGE

[Turn over]

\section*{| 0 | 5 |
| :--- | :--- |}

This question is about small particles.

\section*{| 0 | 5 |
| :--- | :--- | :--- | :--- |}

Which type of particle is often referred to as dust? [1 mark]

Tick (\checkmark) ONE box.

Coarse particle

Fine particle

Nanoparticle

\section*{| 0 | 5 | 2 |
| :--- | :--- | :--- |}

A spherical coarse particle has a diameter of 4000 nm .

A spherical fine particle has a diameter of 200 nm .

How many times larger is the diameter of the coarse particle than the diameter of the fine particle? [1 mark]

Tick (\checkmark) ONE box.

2 times

5 times

20 times

50 times
[Turn over]

0 5. 3

FIGURE 6 represents a cubic nanoparticle.

FIGURE 6

The volume of the cubic nanoparticle is $27 \mathrm{~nm}^{3}$.

Calculate:

- the surface area of the cubic nanoparticle
- the simplest whole number ratio of surface area : volume for the cubic nanoparticle.

Use the equation:
surface area of cubic nanoparticle $=$
$6 \times$ surface area of one face
[4 marks]

Surface area of cubic nanoparticle $=$ $n m^{2}$

44

Simplest whole number ratio of surface

 area : volume =
45

Titanium oxide is used in some sun creams.

0	5

Which is an advantage of using nanoparticles of titanium oxide rather than normal-sized particles of titanium oxide in sun creams? [1 mark]

Tick (\checkmark) ONE box.

A smaller mass of nanoparticles is needed to be effective.

Nanoparticles cost more than the same mass of normal-sized particles.

Nanoparticles have a lower surface area to volume ratio than normalsized particles.
[Turn over]

\section*{| 0 | 5 | 5 |
| :--- | :--- | :--- |}

Titanium oxide contains Ti^{4+} ions and $\mathrm{O}^{\mathbf{2 -}}$ ions.

What is the formula of titanium oxide? [1 mark]

Tick (\checkmark) ONE box.

$\square \mathrm{TiO}_{4}$

47

\section*{| 0 | 6 |
| :--- | :--- |}

This question is about metals.

0	6

Platinum is used to make jewellery.
Suggest ONE reason why platinum is used to make jewellery. [1 mark]

[Turn over]

48

0.6 .2

FIGURE 7 shows a piece of sodium being added to water.

FIGURE 7

Sodium

Water

49

Give TWO observations that could be seen when sodium is added to water. [2 marks]
1

2
\qquad
[Turn over]

Copper is a transition element.

Sodium is a Group 1 element.
What are TWO differences between copper and sodium? [2 marks]

Tick (\checkmark) TWO boxes.

Copper has a lower melting point.

Copper is harder.

Copper is less dense.

Copper is less reactive.

Copper is less strong.

BLANK PAGE

[Turn over]

\section*{| 0 | 6. | 4 |
| :--- | :--- | :--- |}

The metals aluminium and copper can be used to make pans for cooking.

TABLE 2 shows information about the two metals.

The higher the value for thermal conductivity, the better the metal conducts thermal energy.

TABLE 2

	ALUMINIUM	COPPER
Thermal conductivity in arbitrary units	250	400
Density in g/cm 3	2.7	8.9
Cost of metal per kg in $£$	1.50	7.00

Evaluate the use of pans made of aluminium and of copper.

Use TABLE 2. [4 marks]
\qquad
[Turn over]

0	7

This question is about ionic compounds and electrolysis.

Sodium chloride is an ionic compound.

0	7.

FIGURE 8, on the opposite page,
represents part of the structure of solid sodium chloride.

55
FIGURE 8

KEY
○ Na^{+}ion
Cl^{-}ion

Complete FIGURE 8. [2 marks]

[Turn over]

56

07.2

Give ONE reason why molten sodium chloride conducts electricity.

Refer to ions in your answer. [1 mark]

57

\section*{| 0 | 7. | 3 |
| :--- | :--- | :--- |}

TABLE 3 shows products of the electrolysis of two molten ionic compounds.

Complete TABLE 3. [2 marks]
TABLE 3

$\left.$| MOLTEN |
| :--- | :--- | :--- |
| COMPOUND | | PRODUCT |
| :--- |
| AT THE |
| NEGATIVE |
| ELECTRODE |\quad| PRODUCT |
| :--- |
| AT THE |
| POSITIVE |
| ELECTRODE | \right\rvert\, | Magnesium
 bromide | Magnesium | - |
| :--- | :--- | :--- |
| Potassium
 chloride | | Chlorine |

[Turn over]

\section*{| 0 | 7. |
| :--- | :--- |}

Aluminium is extracted by electrolysis.

The electrolyte is a molten mixture of aluminium oxide and cryolite.

Why is a mixture used instead of pure aluminium oxide as the electrolyte?
[1 mark]
Tick (\checkmark) ONE box

The mixture has a lower melting point than pure aluminium oxide.

The mixture has the same melting point as pure aluminium oxide.

The mixture has a higher melting point than pure aluminium oxide.

\section*{| 0 | 7. | 5 |
| :--- | :--- | :--- |}

Electrolysis of an aqueous solution of sodium sulfate produces hydrogen and oxygen.

What is the source of the hydrogen and the oxygen produced during the electrolysis of aqueous sodium sulfate solution? [1 mark]

Tick (\checkmark) ONE box.

Air

Sulfate ions

Water
[Turn over]

Electrolysis of an aqueous solution of sodium sulfate produces hydrogen and oxygen.

0	7.

Why is hydrogen produced instead of sodium in the electrolysis of aqueous sodium sulfate solution? [1 mark]

Tick (\checkmark) ONE box.

Hydrogen is less reactive than sodium.

Hydrogen has the same reactivity as sodium.

Hydrogen is more reactive than sodium.

BLANK PAGE

[Turn over]

62

077.7

FIGURE 9 shows the relationship between the volume of hydrogen and the volume of oxygen produced during the electrolysis.

FIGURE 9
Volume of oxygen produced in $\mathbf{c m}^{3}$

Give ONE conclusion that can be made about the volume of hydrogen produced compared to the volume of oxygen produced. [1 mark]
[Turn over]
9
64

65

| 0.8 |
| :--- |, 2

Iron oxide is reduced in this reaction.
How does the equation show that iron oxide is reduced?
[1 mark]
[Turn over]

66

0.8
Calculate the relative formula mass $\left(M_{r}\right)$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{O}=16 \quad \mathrm{Fe}=56$

[2 marks]

68

69
Relative atomic mass $\left(A_{\mathrm{r}}\right): \quad \mathrm{Cu}=63.5$
Relative formula masses $\left(M_{\mathrm{r}}\right): \quad \mathrm{H}_{2}=2$
[2 marks]
Percentage atom economy =
$\mathrm{CuO}=79.5$
\%

> [Turn over]
70

71
[Turn over]

72

TABLE 4

	METAL SULFATE SOLUTION			
METAL	A sulfate	B sulfate	C sulfate	D sulfate
A	\times	\times	\checkmark	\times
B	\checkmark	\times	\checkmark	\times
C	\times	\times	\times	\times
D	\checkmark	\checkmark	\checkmark	\times

\checkmark shows that a displacement reaction took place.
\times shows that a displacement reaction did not take

73
[Turn over]

0	9

Discoveries in chemistry led to a better understanding of atomic structure.

0	9

Atoms were originally thought to be tiny spheres that could not be divided.

The plum pudding model of the atom was then developed.

FIGURE 10, on the opposite page, represents the plum pudding model of the atom.

75

FIGURE 10

Describe the plum pudding model of the atom. [2 marks]

[Turn over]

76

\section*{| 0 | 9 | 2 |
| :--- | :--- | :--- |}

Atoms contain electrons, neutrons and protons.

Write these three particles in order of their discovery. [1 mark]
Earliest

Latest

77

Very few atoms of the element tennessine (Ts) have ever been identified.

The atomic number of tennessine is 117

0	9

Predict the number of outer shell electrons in an atom of tennessine.

Give ONE reason for your answer.
Use the periodic table. [2 marks]
Number of outer shell electrons Reason
[Turn over]

\section*{| 0 | 9 | 4 |
| :--- | :--- | :--- |}

Tennessine was first identified by a small group of scientists in 2010.

Suggest ONE reason why tennessine was NOT accepted as a new element by other scientists until 2015. [1 mark]

BLANK PAGE

[Turn over]

\section*{| 0 | 9 | 5 |
| :--- | :--- | :--- |}

The discovery of isotopes explained why some relative atomic masses are not whole numbers.

Element R has two isotopes.
TABLE 5 shows the mass numbers and percentage abundances of the isotopes of element R.

TABLE 5

MASS NUMBER	PERCENTAGE ABUNDANCE (\%)
6	7.6
7	92.4

Calculate the relative atomic mass $\left(A_{r}\right)$ of element R .

Give your answer to 1 decimal place. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relative atomic mass (1 decimal place) $=$
[Turn over]
\square
This question is about temperature changes.

A student investigated the change in temperature of a solution when different masses of ammonium nitrate were dissolved in water.

This is the method used.

1. Measure $200 \mathrm{~cm}^{3}$ of water into a polystyrene cup.
2. Measure the temperature of the water.
3. Add 4.0 g of ammonium nitrate to the water.
4. Stir the solution until all the ammonium nitrate has dissolved.

83

5. Measure the lowest temperature reached by the solution.
6. Repeat steps 1 to 5 with different masses of ammonium nitrate.

1	0.

Give the independent variable and the dependent variable in the investigation. [2 marks]
Independent variable

Dependent variable

[Turn over]

84

TABLE 6 shows the results.

TABLE 6

Mass of ammonium nitrate added in grams	Lowest temperature of solution in ${ }^{\circ} \mathrm{C}$
4.0	18.2
8.0	16.2
12.0	15.2
16.0	13.6
20.0	12.4
24.0	10.6

1	0

Plot the data from TABLE 6 on
FIGURE 11, on the opposite page.
Draw a line of best fit. [3 marks]

FIGURE 11
Lowest temperature of solution in ${ }^{\circ} \mathrm{C}$

[Turn over]

86

BLANK PAGE

87

\section*{| 1 | 0. |
| :--- | :--- |}

Determine the initial temperature of the water.

You should extend your line of best fit on FIGURE 11, on page 85. [2 marks]

Initial temperature of the water $=$

$$
{ }^{\circ} \mathrm{C}
$$

\square

1	0.4

How do the results show that dissolving ammonium nitrate in water is endothermic? [1 mark]
[Turn over]

88
The student repeated the experiment three more times.
TABLE 7 shows the results for 8.0 g of ammonium nitrate.

	Trial 1	Trial 2	Trial 3	Trial 4	Mean
Lowest temperature of solution in ${ }^{\circ} \mathrm{C}$	16.2	16.6	16.8	16.4	16.5

10.5
The student recorded the mean lowest temperature of the
solution for 8.0 g of ammonium nitrate as $16.5 \pm 0.3^{\circ} \mathrm{C}$.
Explain why the student included $\pm 0.3^{\circ} \mathrm{C}$ after the mean
lowest temperature. [2 marks]
[Turn over]

90

BLANK PAGE

91

| 10.6 |
| :--- | :--- |

What type of error is shown by the results in TABLE 7, on page 88?
[1 mark]
Tick (\checkmark) ONE box.

Random error

Systematic error

Zero error
[Turn over]

92

11

This question is about making a soluble salt.

1	1.1

Plan a method to make pure, dry crystals of zinc chloride from zinc carbonate and a dilute acid. [6 marks]
\qquad
\qquad
\qquad
\qquad

93

[Turn over]

94

1	1.

Name TWO other substances that can each be reacted with a dilute acid to make zinc chloride.

Do NOT refer to zinc carbonate in your answer. [2 marks]

1
2

END OF QUESTIONS

95

\qquad

96

\qquad

97

\qquad

98

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

