

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.)

GCSE CHEMISTRY

Higher Tier Paper 1

Monday 22 May 2023

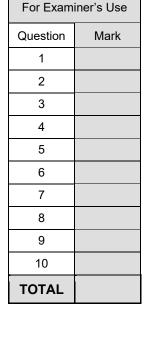
Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).


Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Н

IB/M/Jun23/E15

		.
0 1	Discoveries in chemistry led to a better understanding of atomic structure.	Do not write outside the box
01.1	Atoms were originally thought to be tiny spheres that could not be divided.	
	The plum pudding model of the atom was then developed.	
	Figure 1 represents the plum pudding model of the atom.	
	Figure 1	
	Describe the plum pudding model of the atom. [2 marks]	
0 1.2	Atoms contain electrons, neutrons and protons.	
	Write these three particles in order of their discovery. [1 mark]	
	Earliest	
	Latest	

	Very few atoms of the element tennessine (Ts) have ever been identified. The atomic number of tennessine is 117	Do not write outside the box
01.3	Predict the number of outer shell electrons in an atom of tennessine. Give one reason for your answer. Use the periodic table. [2 marks] Number of outer shell electrons Reason	
01.4	Tennessine was first identified by a small group of scientists in 2010. Suggest one reason why tennessine was not accepted as a new element by other scientists until 2015. [1 mark]	
	Question 1 continues on the next page	

Turn over ►

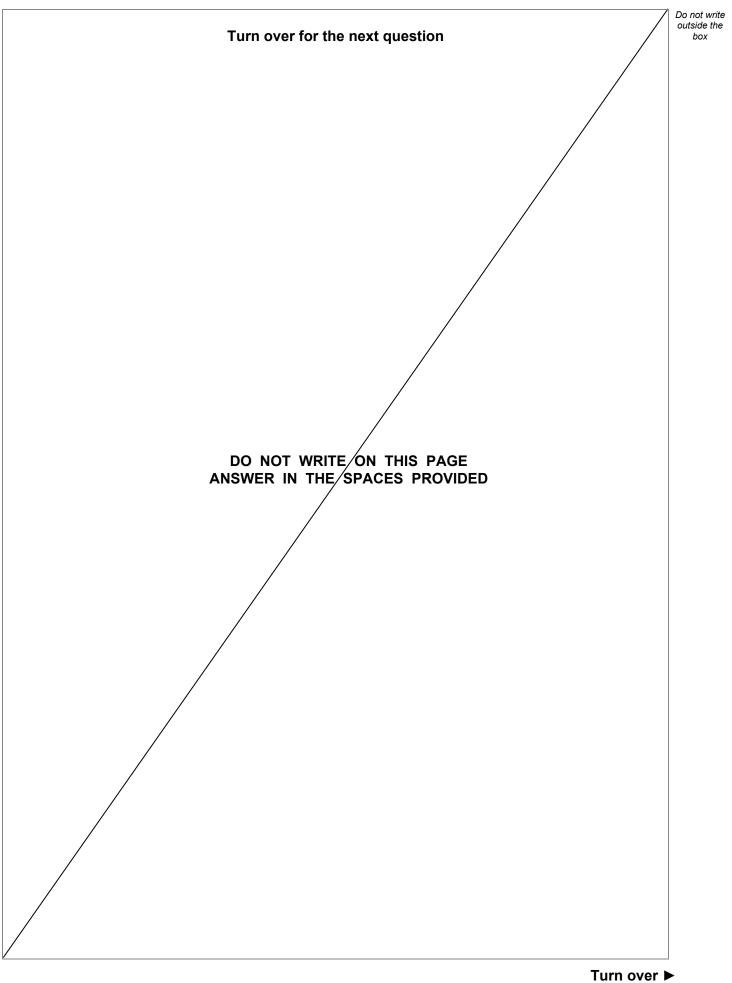
0 1 . 5

5 The discovery of isotopes explained why some relative atomic masses are not whole numbers.

Element **R** has two isotopes.

Table 1 shows the mass numbers and percentage abundances of the isotopes of element **R**.

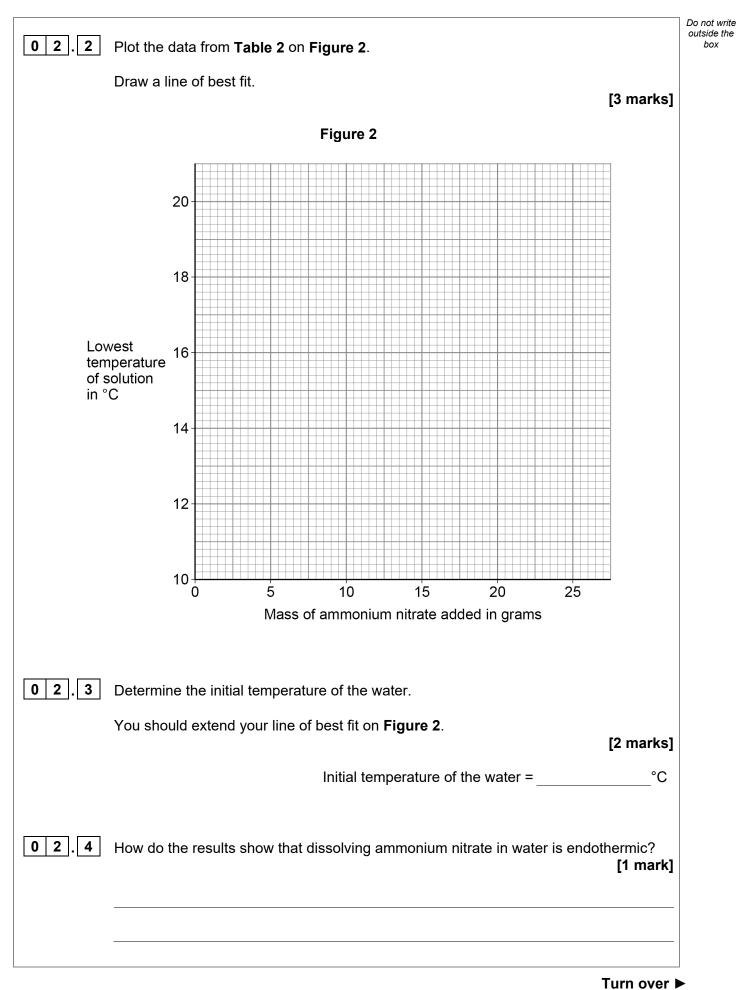
Table	1
-------	---


Mass number	Percentage abundance (%)
6	7.6
7	92.4

Calculate the relative atomic mass (A_r) of element **R**.

Give your answer to 1 decimal place.

Relative atomic mass (1 decimal place) = ____


[3 marks]

0 2	This question is about temperature of	changes	Do not wri outside th box	
	A student investigated the change in of ammonium nitrate were dissolved	n temperature of a solution when differer ⊢in water.	nt masses	
	This is the method used.			
	1. Measure 200 cm ³ of water into a p	polystyrene cup.		
	2. Measure the temperature of the w	rater.		
	3. Add 4.0 g of ammonium nitrate to	the water.		
	4. Stir the solution until all the ammo	nium nitrate has dissolved.		
	5. Measure the lowest temperature r	eached by the solution.		
	6. Repeat steps 1 to 5 with different	masses of ammonium nitrate.		
02.1	Give the independent variable and the dependent variable in the investigation. [2 marks] Independent variable Dependent variable			
	Table 2 shows the results.			
	Tab	le 2		
Г				
	Mass of ammonium nitrate added in grams	Lowest temperature of solution in °C		
-	4.0	18.2		
-	8.0	16.2		
	12.0	15.2		
	16.0	13.6		
	20.0	12.4		
	24.0	10.6		

8

Do not write
outside the
box

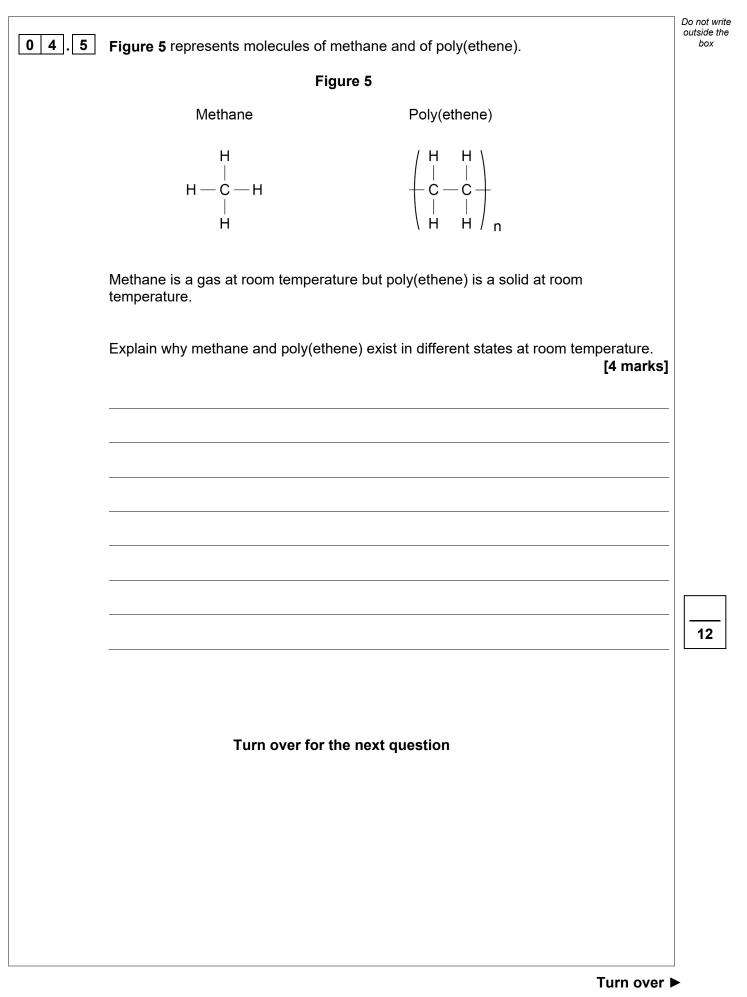
The student repeated the experiment three more times.
Table 3 shows the results for 8.0 g of ammonium nitrate.
 Table 3 Trial 1 Trial 2 Trial 3 Trial 4 Mean Lowest temperature 16.2 16.8 16.4 16.6 16.5 of solution in °C 0 2 . 5 The student recorded the mean lowest temperature of the solution for 8.0 g of ammonium nitrate as 16.5 ± 0.3 °C. Explain why the student included ± 0.3 °C after the mean lowest temperature. [2 marks] 0 2 . 6 What type of error is shown by the results in **Table 3**? [1 mark] Tick (✓) one box. Random error Systematic error Zero error

11

0 3	This question is about making a soluble salt.	Do not write outside the box
0 3.1	Plan a method to make pure, dry crystals of zinc chloride from zinc carbonate and a	
	dilute acid. [6 marks]	
0 3 . 2	Name two other substances that can each be reacted with a dilute acid to make zinc chloride.	
	Do not refer to zinc carbonate in your answer. [2 marks]	
	1	
	2	8

Figure 3 shows the di chlorine.	isplayed formulae	for the reaction b	etween hydrogen	and
	Figure	3		
H—H	+ Cl—Cl	→ 2H-C	Cl	
Table 4 shows the bo	nd energies.			
	Table	4		
Bond	н—н	Cl — Cl	H — Cl]
Bond energy in	436	246		_
kJ/mol Which expression sho in Figure 3? Use Table 4.		346 ate the overall ene	432 ergy change for the	e reaction
kJ/mol Which expression sho in Figure 3?				
kJ/mol Which expression sho in Figure 3? Use Table 4.	ows how to calcula			
 kJ/mol Which expression sho in Figure 3? Use Table 4. Tick (✓) one box. 	ol			
 kJ/mol Which expression sho in Figure 3? Use Table 4. Tick (✓) one box. 436 + 346 + 432 kJ/m 	ol			
 kJ/mol Which expression sho in Figure 3? Use Table 4. Tick (✓) one box. 436 + 346 + 432 kJ/m 436 + 346 + (2 × 432) 	ol			
kJ/mol Which expression sho in Figure 3? Use Table 4. Tick (✓) one box. 436 + 346 + 432 kJ/m 436 + 346 + (2 × 432) 436 + 346 - 432 kJ/m	ol			e reaction [1 mark]

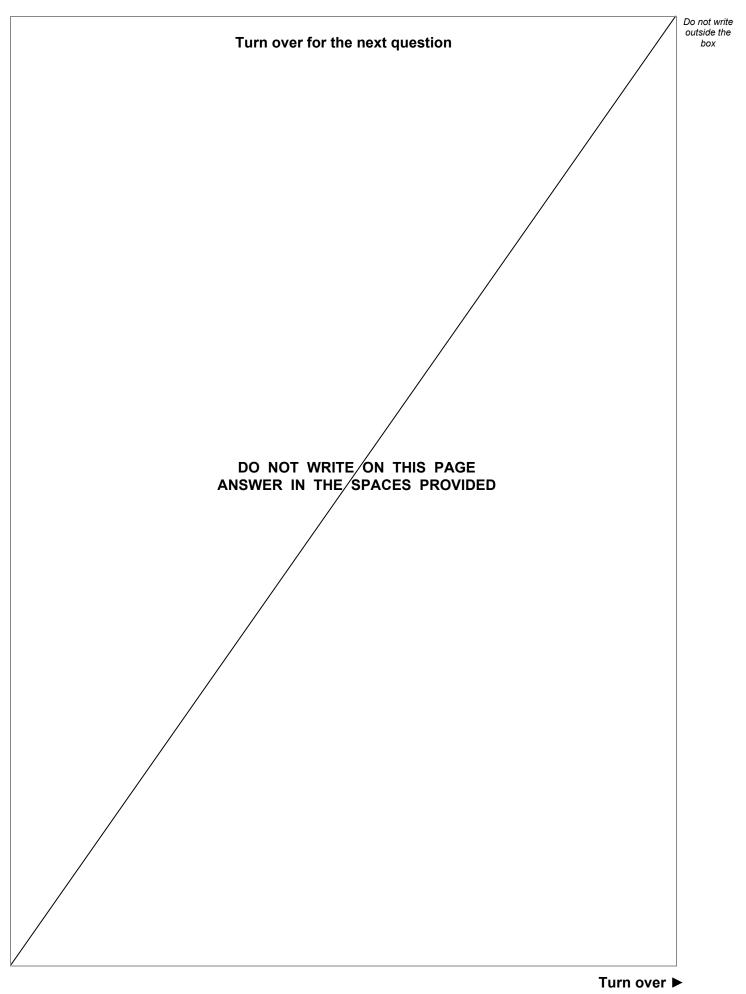
(1) (2) Explain why this reaction releases energy to the surroundings. [2 marks] (1) (2) Figure 4 shows part of a reaction profile for the reaction between hydrogen and chlorine. (2) (3) Figure 4 shows part of a reaction profile for the reaction between hydrogen and chlorine. (2) (3) Complete the reaction profile in Figure 4. (2) Us should: (3) Isbel the overall energy change. (3) Figure 4 (4) (3) Figure 4 (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5		The reaction between hydrogen and chlorine is exothermic.		Do not write outside the box
and chlorine. Complete the reaction profile in Figure 4. You should: • label the activation energy • label the overall energy change. [3 marks] Figure 4 Energy H ₂ + Cl ₂ Progress of reaction	04.2	Explain why this reaction releases energy to the surroundings.	[2 marks]	
and chlorine. Complete the reaction profile in Figure 4. You should: • label the activation energy • label the overall energy change. [3 marks] Figure 4 Energy H ₂ + Cl ₂ Progress of reaction				
and chlorine. Complete the reaction profile in Figure 4. You should: • label the activation energy • label the overall energy change. [3 marks] Figure 4 Energy H ₂ + Cl ₂ Progress of reaction				
and chlorine. Complete the reaction profile in Figure 4. You should: • label the activation energy • label the overall energy change. [3 marks] Figure 4 Energy H ₂ + Cl ₂ Progress of reaction				
and chlorine. Complete the reaction profile in Figure 4. You should: • label the activation energy • label the overall energy change. [3 marks] Figure 4 Energy H ₂ + Cl ₂ Progress of reaction				
You should: I abel the activation energy I abel the overall energy change. I arrks] I arrks	0 4 . 3			
 label the activation energy label the overall energy change. [3 marks] 		Complete the reaction profile in Figure 4 .		
• label the overall energy change. [3 marks] Figure 4 Energy $H_2 + Cl_2$ Progress of reaction		You should:		
Figure 4 Energy $H_2 + Cl_2$ Progress of reaction		 label the activation energy 		
Energy $H_2 + Cl_2$ Progress of reaction		 label the overall energy change. 	[3 marks]	
Progress of reaction		Figure 4		
Progress of reaction		↑		
Progress of reaction				
		Energy $H_2 + Cl_2$		
Question 4 continues on the next page		Progress of reaction		
		Question 4 continues on the next page		

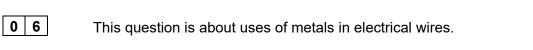

04.4	Draw a dot and cross diagram for a molecule of hydrogen chloride (HCl).
------	---

Show the outer shell electrons only.

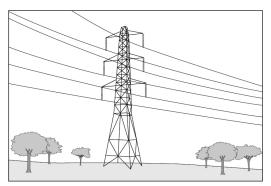
[2 marks]

Do not write outside the box


		Do not write
0 5	This question is about acids and alkalis.	outside the box
0 5.1	Ethanoic acid is a weak acid.	
	What is meant by 'weak acid'?	
	Answer in terms of ionisation.	
	[1 mark]	
0 5 . 2	The concentration of an acid can be measured in mol/dm ³ .	
	Which combination of changes increases the concentration of an acid? [1 mark]	
	Tick (\checkmark) one box.	
	The mass of acid dissolved is halved and the volume of the solution is halved.	
	The mass of acid dissolved is halved and the volume of the solution is doubled.	
	The mass of acid dissolved is doubled and the volume of the solution is halved.	
	The mass of acid dissolved is doubled and the volume of the solution is doubled.	
0 5.3	The concentration of an acid can be determined by titration.	
	An indicator is added to an alkali in a flask.	
	Name an indicator that can be used in this titration.	
	Give the colour change of the indicator when acid from a burette is added to the alkali in the flask.	
	[2 marks]	
	Name of indicator	
	Colour change from to	


0 5.4	Sodium carbonate dissolves in water to produce an alkaline solution. Give the formula of the ion that makes a solution alkaline.	[1 mark]	Do not write outside the box
0 5.5	A student does a titration using sodium carbonate solution and nitric acid. The equation for the reaction is: $Na_2CO_3 + 2 HNO_3 \rightarrow 2 NaNO_3 + CO_2 + H_2O$ 25.0 cm ³ of 0.124 mol/dm ³ sodium carbonate solution is neutralised by		
	 23.6 cm³ of nitric acid. Calculate the concentration of the nitric acid. Give your answer to 3 significant figures. You should calculate: the number of moles of sodium carbonate in 25.0 cm³ of the solution the number of moles of nitric acid in 23.6 cm³ of the nitric acid the concentration of the nitric acid in mol/dm³. 	[5 marks]	
	Concentration (3 significant figures) =	mol/dm ³	

	When hydrochloric acid dissolves in water, hydrogen ions (H ⁺) and chloride ions (Cl ⁻) are produced.	Do not write outside the box
0 5.6	A solution of hydrochloric acid with pH 4.5 has a concentration of H ⁺ ions of 3.16×10^{-5} mol/dm ³ .	
	What is the concentration of H ⁺ ions in a solution of hydrochloric acid with pH 2.5? [1 mark]	
	Concentration of H ⁺ ions =mol/dm ³	
0 5.7	Which element has atoms that have the same electronic structure as the chloride ion? Use the periodic table.	
	[1 mark]	12
	IB/M/Jun23/8462/1	н



Electrical wires can be made from:

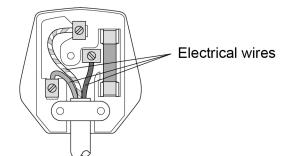
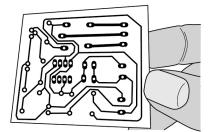

- aluminium
- copper
- silver.

Figure 6 shows three uses of electrical wires.


Figure 6

Overhead power cables

Wiring in homes

Printed circuit boards

 Table 5 shows information about the metals.

The higher the value for electrical conductivity, the better the metal is at conducting electricity.

Table \$	5
----------	---

	Aluminium	Copper	Silver
Electrical conductivity in arbitrary units	37.7	59.6	63.0
Density in g/cm ³	2.7	9.0	10.5
Cost of metal per kg in £	1.50	7.00	640.00

Do not write outside the

box

0 6.1	Evaluate the use of aluminium, copper and silver for the types of electrical wires shown in Figure 6 .	Do not write outside the box
	Use Table 5. [4 marks]	
06.2	Describe how metals conduct electricity. [3 marks]	
	Question 6 continues on the next page	

Electrical wires are usually made of pure metals and **not** alloys. This is because pure

Suggest why alloys do **not** conduct electricity as well as pure metals.

Answer in terms of structure and bonding.

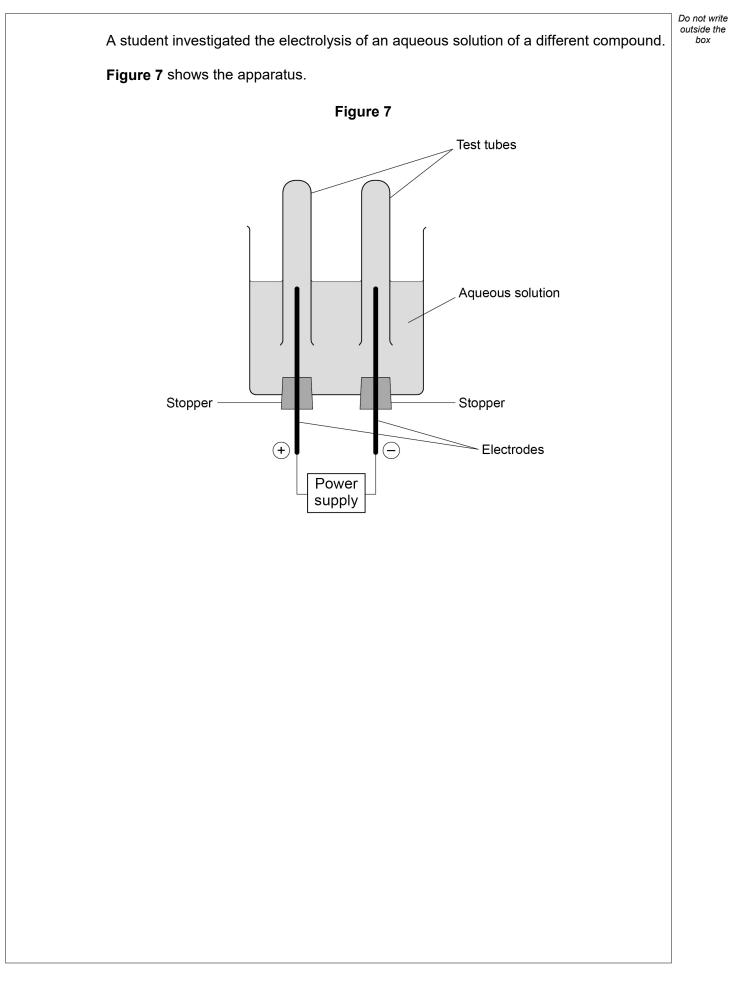
metals are better electrical conductors.

[2 marks]

9

Do not write outside the

box

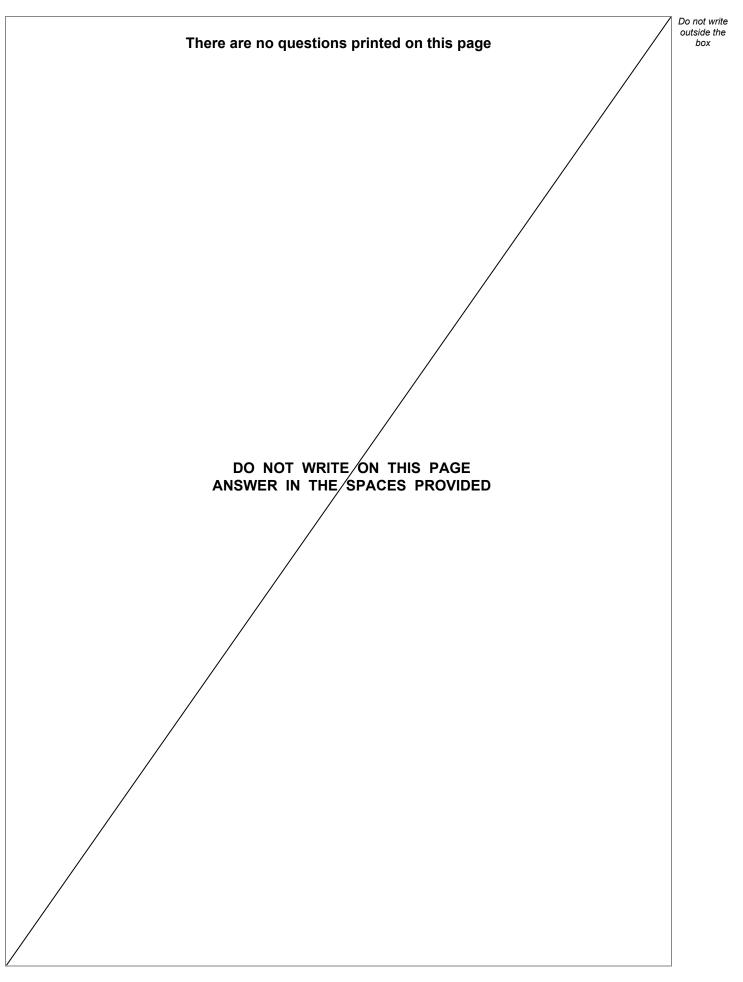


0 6 . 3

0 7	This question is about electrolysis.	Do not write outside the box
	Aluminium is manufactured by electrolysing a molten mixture of aluminium oxide (Al_2O_3) and cryolite (Na_3AlF_6) .	
0 7.1	Complete the half equation for the reaction occurring at the negative electrode. [1 mark]	
	$Al^{3+} + \e^- \rightarrow Al$	
0 7.2	Cryolite contains Na⁺ ions as well as Al³⁺ ions.	
	Suggest one reason why sodium is not a product of the electrolysis. [1 mark]	
	Question 7 continues on the next page	
I	Turn over	

lurn over

0 7.3	Hydrogen was produced at the negative electrode and oxygen was produced at the positive electrode. Explain how oxygen was produced from water during the electrolysis of this	Do not writ outside the box
	aqueous solution. [4 marks]	
0 7.4	The student compared the volumes of the two gases collected.	
	How can the student change the apparatus in Figure 7 to compare the volumes of the two gases produced more accurately?	
	Give one reason for your answer.	
	[2 marks]	
	Reason	
0 7 . 5	The overall equation for the reaction is:	
	$2 H_2 O(I) \rightarrow 2 H_2(g) + O_2(g)$	
	What is the volume of oxygen produced when 20 cm ³ of hydrogen has been produced?	
	[1 mark] Tick (✓) one box.	
	10 cm^3 20 cm ³ 30 cm ³ 40 cm ³	9
	Turn over ▶	▶



0 8	This question is about elements in the periodic table.	Do not write outside the box
08.1	Argon has the atomic number 18 Explain why argon does not form compounds. Answer in terms of electrons.	
	[2 marks]	
08.2	Phosphorus (P) is the element below nitrogen in the periodic table.	
	Predict the formula of the compound formed between phosphorus and hydrogen. [1 mark]	
	Formula =	
08.3	Tellurium is the element with atomic number 52	
	Predict whether tellurium reacts with metals.	
	Explain your answer.	
	Answer in terms of the position of tellurium in the periodic table. [2 marks]	

		Do not write outside the
	Barium (Ba) is an element in Group 2 of the periodic table.	box
	Barium reacts with hydrochloric acid.	
0 8.4	Suggest two observations that could be made when barium reacts with hydrochloric acid. [2 marks] 1	
	2	
0 8.5	Write a balanced symbol equation for the reaction between barium and hydrochloric acid. [3 marks]++	10
	Turn over for the next question	
	Turn over I	-

09	This question is about displacement reactions.	Do not write outside the box
	Iron is extracted from iron oxide by a displacement reaction with carbon.	
	The equation for the reaction is:	
	Fe_2O_3 + 3C \rightarrow 2Fe + 3CO	
09.1	Which substance in the equation is reduced?	
	Give one reason for your answer.	
	Answer in terms of oxygen. [2 marks]	
	Substance reduced	
	Reason	
09.2	Which expression shows how to calculate the mass of carbon needed to produce 1 mole of iron from iron oxide? Relative atomic mass (A_r): C = 12 [1 mark] Tick (\checkmark) one box. $\frac{1}{3} \times 12 \text{ g}$	
	3	
	$\frac{3}{2}$ × 12 g	
	1 × 12 g	
	3 × 12 g	
	Question 9 continues on the next page	

Turn over ►

[1 mark]

Do not write outside the

box

A student investigated displacement reactions of four different metals represented by **A**, **B**, **C** and **D**.

A, B, C and D are **not** the actual chemical symbols for the metals.

The student:

- added each metal to aqueous solutions of the metal nitrates
- observed whether a reaction took place.

Table 6 shows information about three of the reaction mixtures.

Table 6

Reaction	Metal	Metal nitrate solution	Equation
1	Α	BNO ₃	$\mathbf{A} + 2\mathbf{B}NO_3 \rightarrow 2\mathbf{B} + \mathbf{A}(NO_3)_2$
2	С	A (NO ₃) ₂	$2\mathbf{C} + 3\mathbf{A}(NO_3)_2 \rightarrow 3\mathbf{A} + 2\mathbf{C}(NO_3)_3$
3	С	D (NO ₃) ₂	no reaction

0 9.3

The ionic equation for **Reaction 1** is:

 $\mathbf{A} + 2 \mathbf{B}^{\scriptscriptstyle +} \rightarrow 2 \mathbf{B} + \mathbf{A}^{2 \scriptscriptstyle +}$

Why is this a redox reaction?

Tick (✓) one box.

A gains electrons and B⁺ loses electrons.

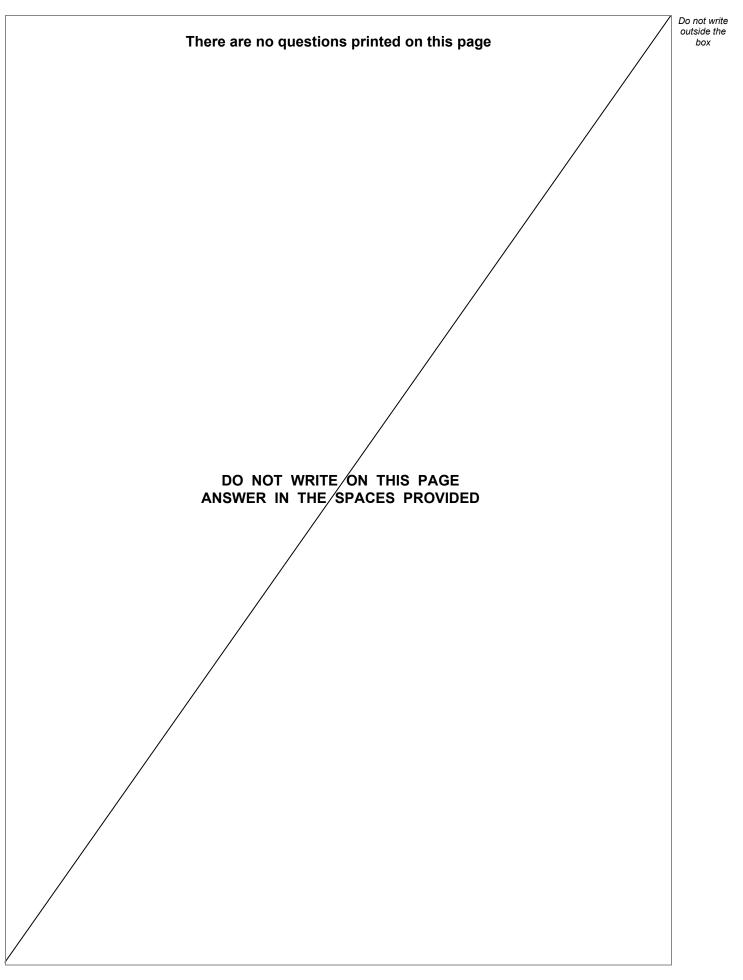
A loses electrons and **B**⁺ gains electrons.

Both **A** and \mathbf{B}^+ gain electrons.

Both **A** and \mathbf{B}^+ lose electrons.

09.4	Which of the four metals has the greatest tendency to form positive ions? Use Table 6. Tick (\checkmark) one box. A B C D	nark]	Do not write outside the box	
09.5	The nitrate ion has the formula NO ₃ ⁻ Which of the four metals could be aluminium? Explain your answer.			
	Use Table 6.	arks]		
Question 9 continues on the next page				

09.6	Metal X is extracted from an oxide of metal X by reaction with hydrogen.	Do not write outside the box
	The equation for the reaction is:	
	$\mathbf{X}O_3$ + $3H_2 \rightarrow \mathbf{X}$ + $3H_2O$	
	The percentage atom economy for obtaining metal ${f X}$ by this method is 77.3%.	
	Calculate the relative atomic mass (A_r) of metal X .	
	Relative atomic masses (A_r): H = 1 O = 16	
	[4 marks]	
	Relative atomic mass (<i>A</i> _r) =	12


	31	
10	This question is about titanium dioxide (TiO ₂).	Do not write outside the box
10.1	Self-cleaning windows are coated with a layer of nanoparticles of titanium dioxide.	
	Titanium dioxide:	
	 helps sunlight break down dirt particles 	
	• attracts water, so dirt is washed away by rain.	
	Nanoparticles of titanium dioxide are used instead of fine particles of titanium dioxide for coating self-cleaning windows.	
	Suggest two reasons why. [2 marks]	
	1	
	2	
	Question 10 continues on the next page	

Turn over 🕨

		Do not write outside the
1 0 . 2	Titanium is extracted from titanium dioxide in a two-stage process.	box
	The equation for the first stage in the process is:	
	$TiO_2 + 2Cl_2 + 2C \rightarrow TiCl_4 + 2CO$	
	Calculate the volume of chlorine gas needed to react completely with 100 kg of titanium dioxide.	
	Relative atomic masses (A_r): O = 16 Ti = 48	
	The volume of one mole of gas = 24 dm ³ [6 marks]	
		8
	Volume = dm ³	
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Do not write outside the
nal page, if required. numbers in the left-hand margin.	box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

