Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE CHEMISTRY

Foundation Tier Paper 2

Tuesday 13 June 2023

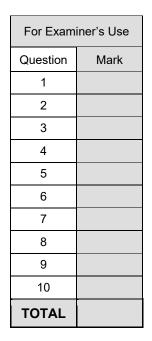
Morning

Time allowed: 1 hour 45 minutes

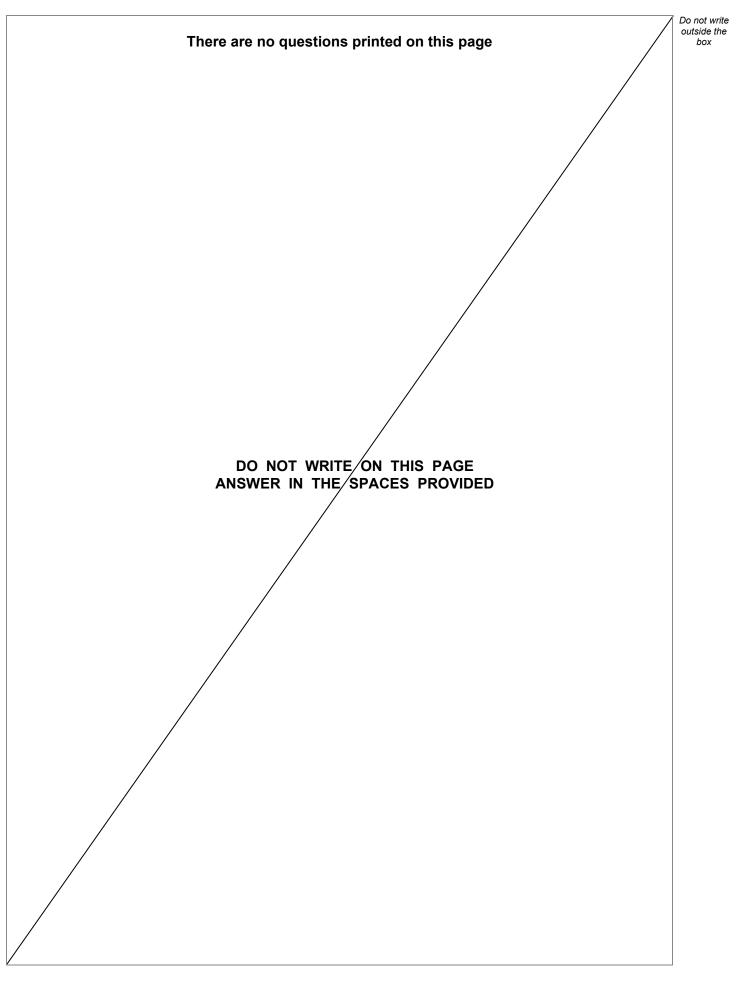
Materials

For this paper you must have:

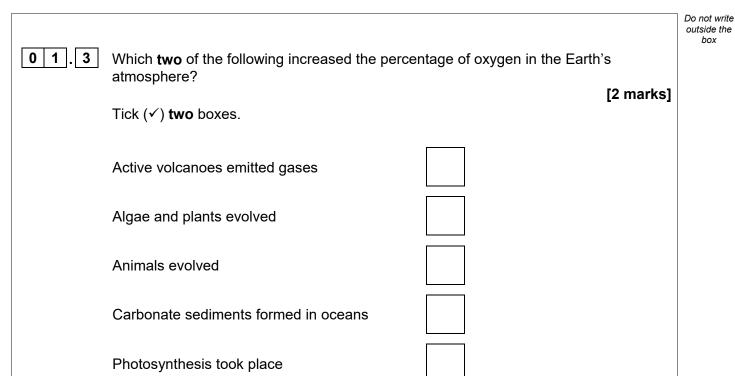
- a ruler
- a scientific calculator
- the periodic table (enclosed).

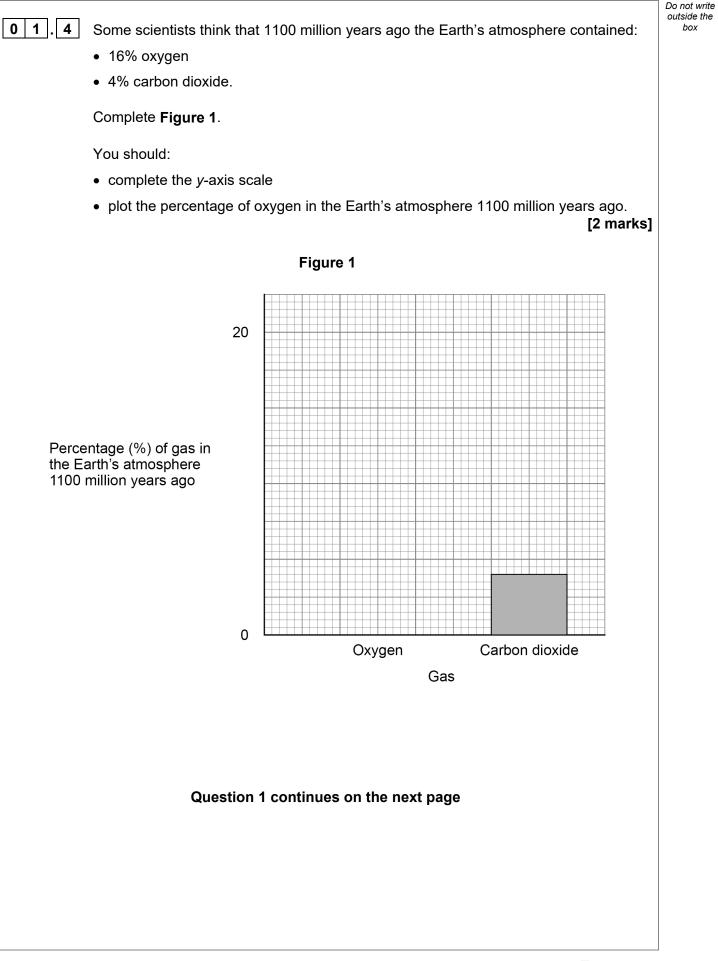

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.


Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

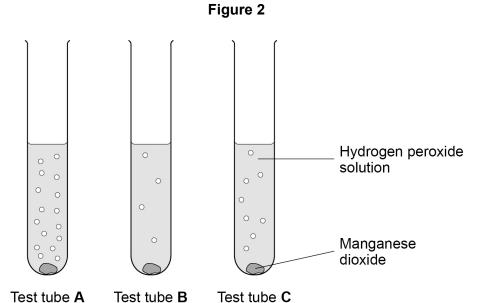



This question is about oxygen.	Do not write outside the box
Scientists think that there was little or no oxygen in the Earth's early atmosphere.	
Which planet today has an atmosphere that is similar to the Earth's early atmosphere? Tick (<) one box. Jupiter Mars Neptune Saturn	
Which is the approximate percentage of oxygen in the Earth's atmosphere today? [1 mark] Tick (✓) one box.	
20% 50% Solution Solu	
80%	
100%	
Question 1 continues on the next page	
	Scientists think that there was little or no oxygen in the Earth's early atmosphere. Which planet today has an atmosphere that is similar to the Earth's early atmosphere? Tick (~) one box. Jupiter Mars Neptune Saturn Which is the approximate percentage of oxygen in the Earth's atmosphere today? It mark] Tick (~) one box. 20% 10%

Turn over ►

Oxygen is produced when manganese dioxide is added to hydrogen peroxide solution.

The equation for the reaction is:

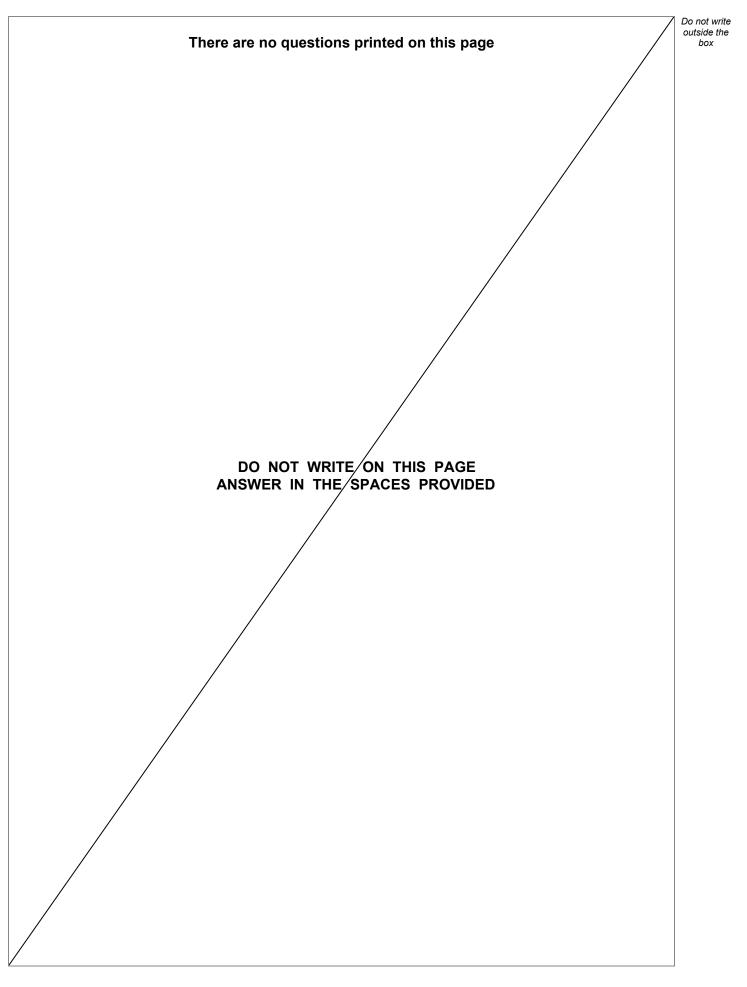

hydrogen peroxide \rightarrow water + oxygen

A student investigated the effect of changing the temperature on the decomposition of hydrogen peroxide.

This is the method used.

- 1. Add 5 cm³ of hydrogen peroxide solution to three test tubes labelled **A**, **B** and **C**.
- 2. Place each test tube in a water bath at a different temperature.
- 3. Add 0.2 g of manganese dioxide to each test tube.

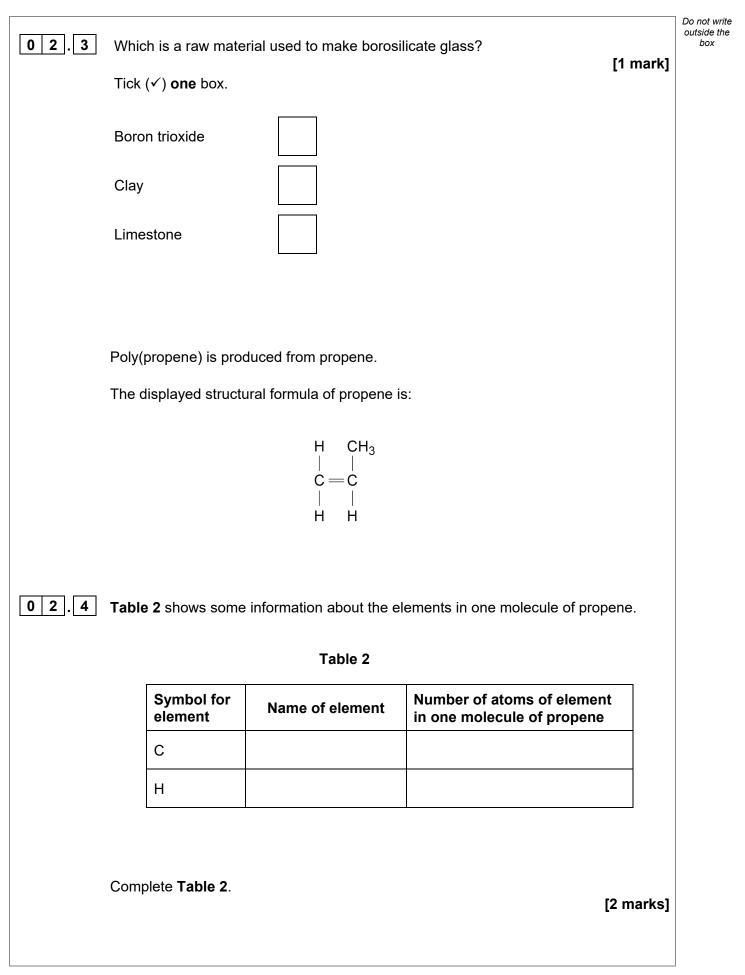
Figure 2 shows the results.

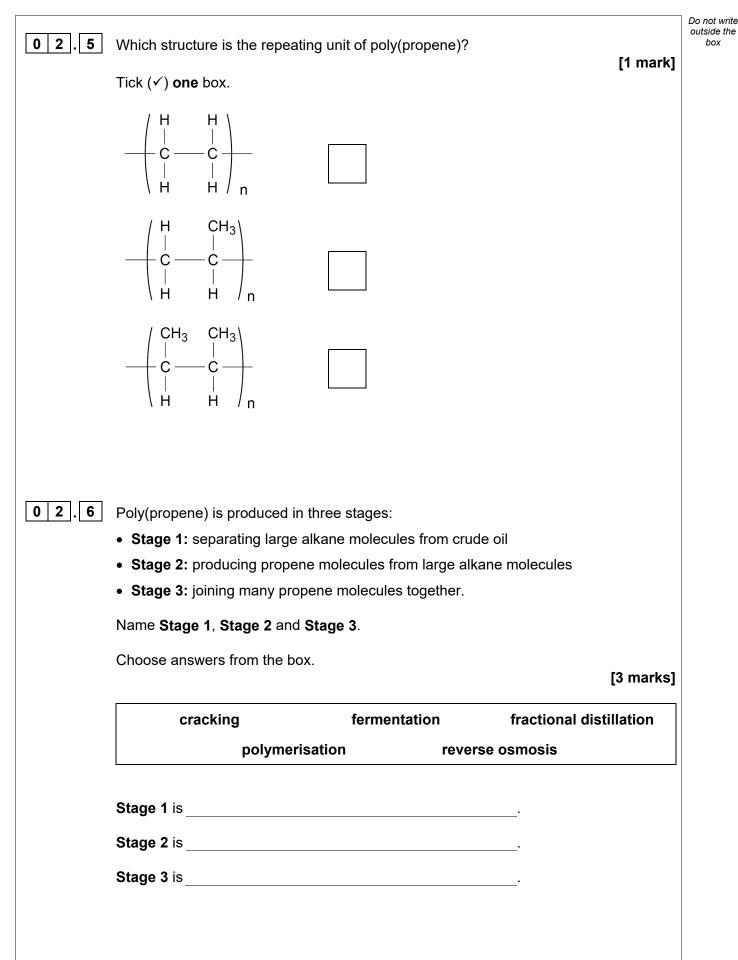


Do not write outside the

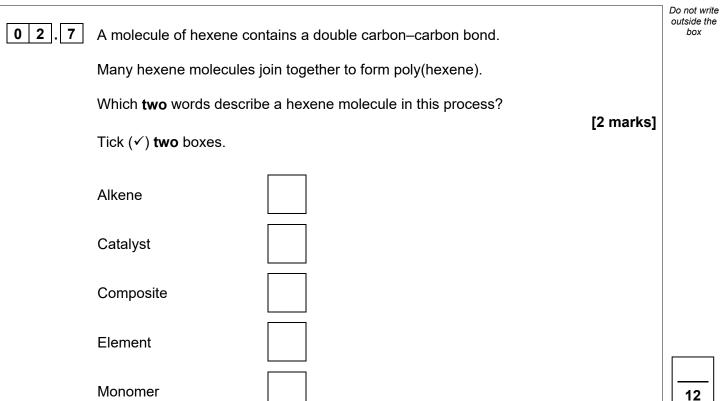
box

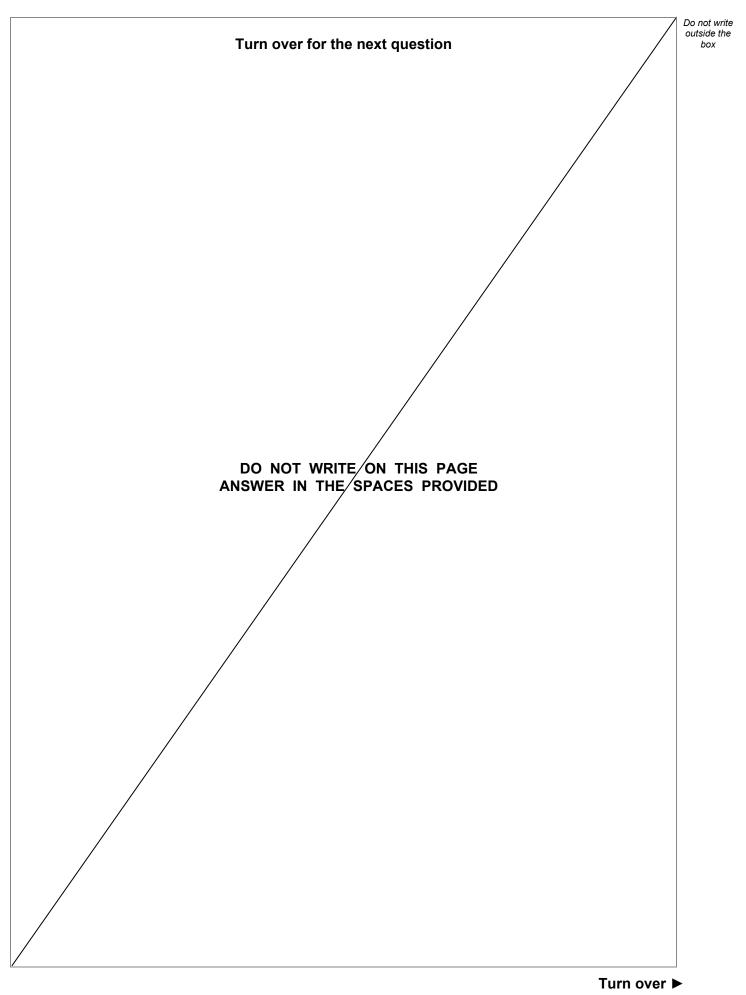
0 1.5	Which test tube contained hydrogen peroxide solution at the highest tempera Tick (\checkmark) one box.	nture? [1 mark]	Do not write outside the box
	Test tube A		
	Test tube B		
	Test tube C		
0 1.6	The student tested the gas produced. What is used to prove that the gas is oxygen?		
		[1 mark]	
	Tick (✓) one box.		
	A glowing splint		
	Bromine water		
	Damp litmus paper		
0 1.7	Manganese dioxide does not appear in the chemical equation for this reactio	n.	
	Which is a correct statement about manganese dioxide in this reaction?		
	Tick (✓) one box.	[1 mark]	
		1	
	Manganese dioxide increases the activation energy in this reaction.		
	Manganese dioxide is a catalyst in this reaction.		
	Manganese dioxide is used up during this reaction.]	
]	
	Manganese dioxide reduces the rate of this reaction.		9

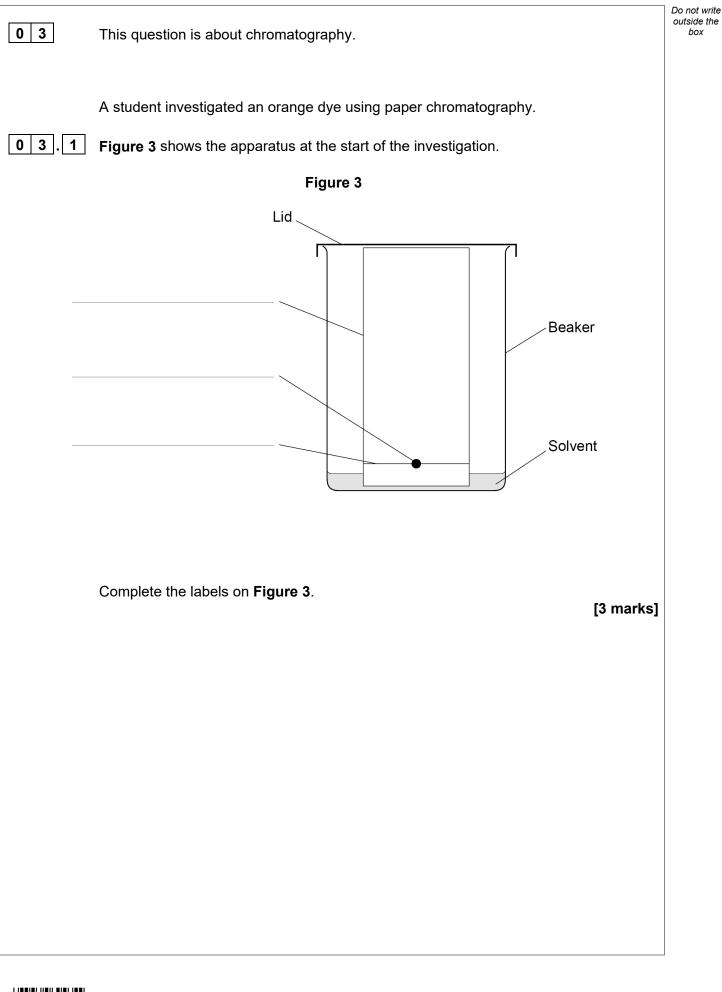


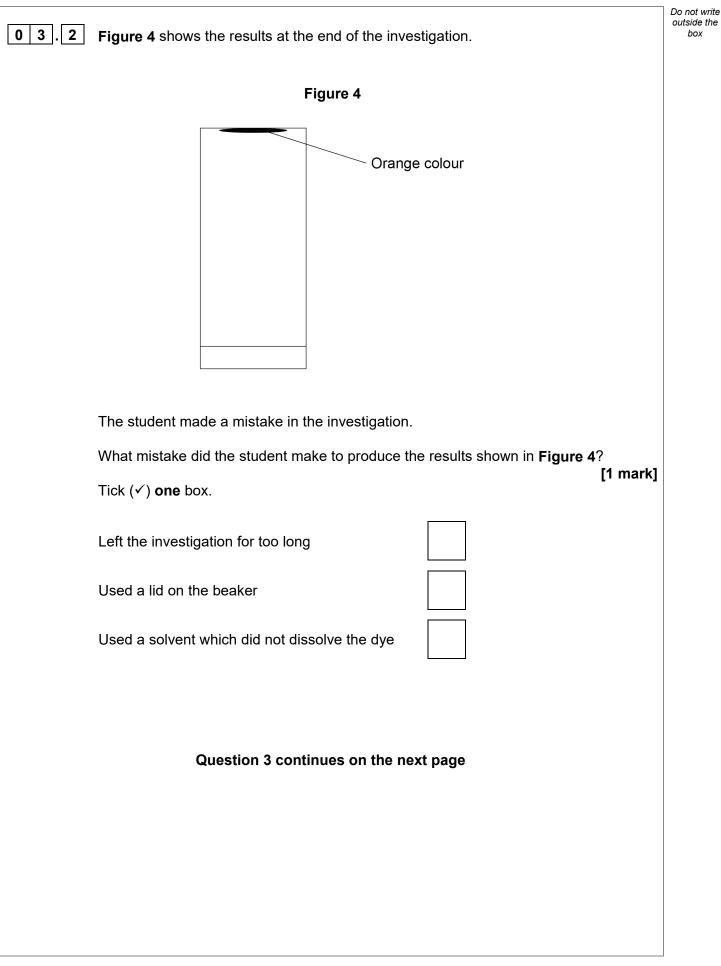


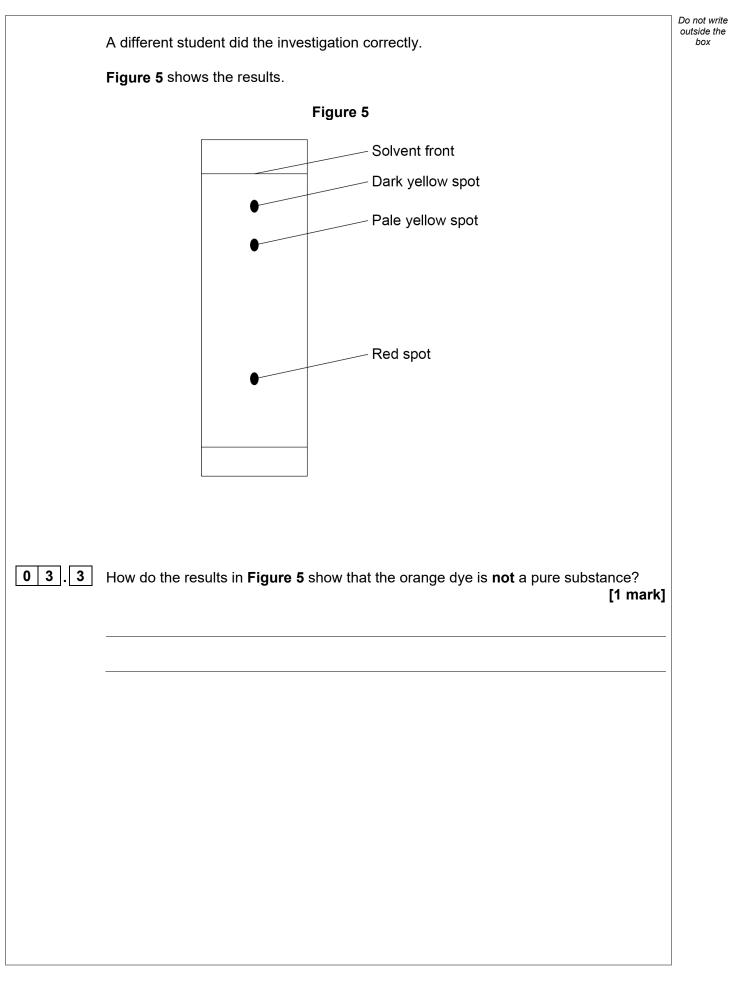
02	This question is about g	lass and polymers.		Do i outs
	Beakers can be made fi	rom borosilicate glass or poly	(propene).	
	Table 1 shows informat	ion about materials used to m	nake beakers.	
		Table 1		
		Material used to	o make beakers	
		borosilicate glass	poly(propene)	
	perature at which ng begins in °C	850	160	
Flam	mability	does not burn	burns	
Resis	tance to impact	shatters	tough	
Cost	of 100 cm³ beaker in £	1.50	2.00	
	poly(propene) beaker. Use Table 1 . 1		[2 mark	s]
				_
02.2	Poly(propene) beakers	are more expensive than bord ny using poly(propene) beake		
	Use Table 1.		[1 mar	k]
				_











0 3.4	Determine the R _f value for the red spot.	Do not write outside the box
	You should measure:	
	 the distance moved by the red spot 	
	 the distance moved by the solvent. 	
	Use Figure 5 and the equation:	
	$R_{f} = \frac{\text{distance moved by red spot}}{\text{distance moved by solvent}}$	
	[4 marks]	
	Distance moved by red spotcm	
	Distance moved by solventcm	
0 3.5	Which spot had the greatest R _f value?	
	Use Figure 5.	
	[1 mark] Tick (✓) one box.	
	Dark yellow spot	
	Pale yellow spot	
	Red spot	10
	Turn over for the next question	
	Turn over ▶	•

0 4	This question is about a reversible reaction.				
	A student heated calcium	n hydroxide to produce o	calcium oxide and water va	apour.	
	This is the method used.				
	1. Add 2.00 g of calcium	hydroxide into a test tub	e.		
	2. Heat the test tube and	contents for 1 minute us	sing a Bunsen burner.		
	3. Allow the test tube and	l contents to cool.			
	4. Weigh the test tube an	id contents.			
	5. Repeat steps 2 to 4 fiv	e more times.			
04.1	Table 3 gives the appea	rance of the reactant ar	nd of the products.		
		Table 3			
		Compound	Appearance		
	Reactant	calcium hydroxide	white powder		
	Products	calcium oxide	white powder		
		water vapour	colourless gas		
	The student looked at the test tube and contents during heating.				
	The student could not te test tube and contents.	ll that a chemical reaction	on was taking place by look	king at the	
	Give two reasons why.				
	Use the information in Table 3 .				
	[2 marks]				
	1				
	2				

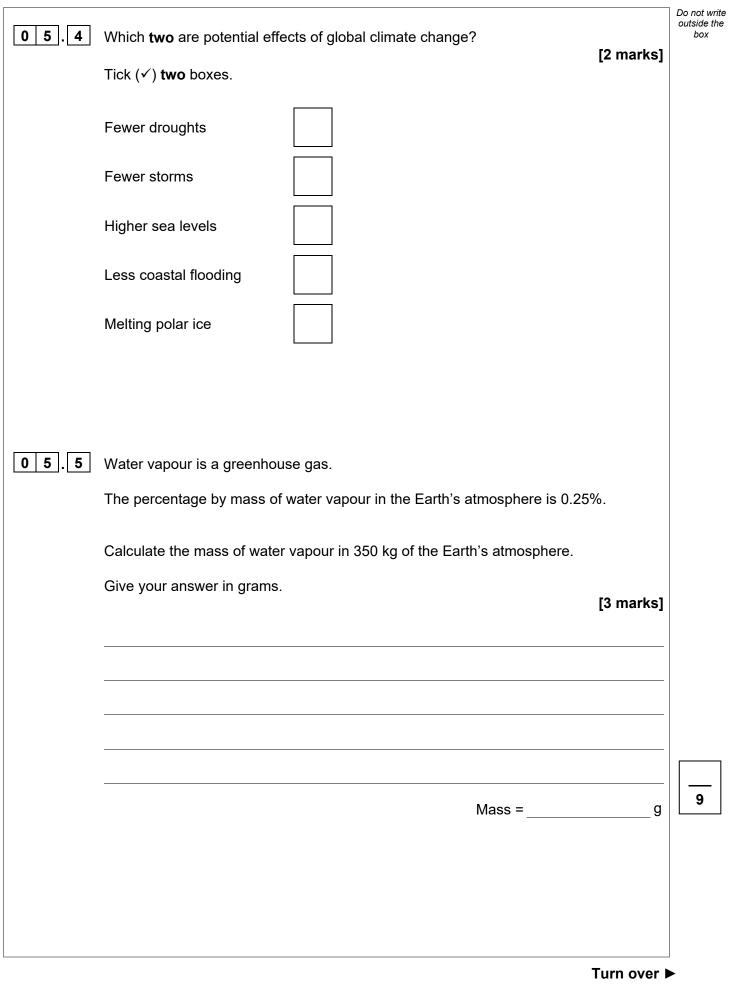
04.2	Accurate results are not produced if solid powders escape from the test tube during heating.	Do not write outside the box
	Suggest why sealing the test tube with a stopper is not a good way of preventing the solid powders from escaping.	
	[1 mark]	
0 4 . 3	The student wanted to calculate the mass of the contents of the test tube after each minute of heating.	
	The student weighed the test tube and contents after each minute of heating.	
	What other measurement is also needed to calculate the mass of the contents of the test tube?	
	[1 mark] Tick (✓) one box.	
	The change in mass of the contents of the test tube at the end	
	The mass of the contents of the test tube at the start	
	The mass of the empty test tube	
	Question 4 continues on the next page	

The student heated 2.00 g of calcium hydroxide to produce calcium oxide and water vapour.

Table 4 shows the results.

		Tal	ble 4	
		ating time nutes	Mass of contents of test tube in grams	
		D	2.00	
		1	1.76	
		2	1.64	
		3	1.56	
		4	1.52	
		5	1.51	
		6	1.51	
	3 minutes	4 minut	es 5 minutes	[1 mark 6 minutes
0 4 . 5	calcium oxide and wat Calculate the total ma Use Table 4 .	er vapour is ss of water va	for all of the calcium hydrox	he calcium hydroxide. [2 marks
			Mass	; =Q

IB/M/Jun23/8462/2F


Do not write outside the box

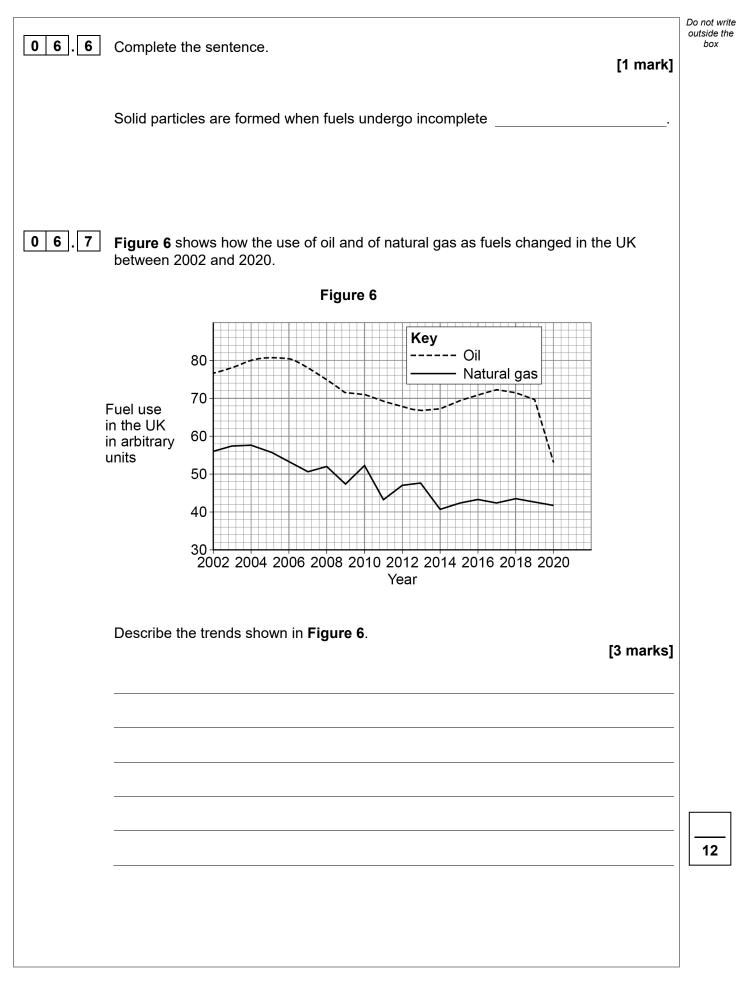
	The word equation for the reaction is:	Do not write outside the box
	calcium hydroxide \Rightarrow calcium oxide + water	
	The reaction is reversible.	
	When 4.00 g of calcium hydroxide is completely changed into calcium oxide and water:	
	• 3.03 g of calcium oxide is produced	
	 5.90 kJ of energy is taken in from the surroundings. 	
04.6	3.03 g of calcium oxide reacts completely with water to produce 4.00 g of calcium hydroxide.	
	How much energy is transferred to the surroundings in this reaction? [1 mark]	
	Tick (✓) one box.	
	Less than 5.90 kJ	
	5.90 kJ	
	More than 5.90 kJ	
04.7	The forward reaction takes in energy from the surroundings.	
	Complete the sentence.	
	Choose the answer from the box. [1 mark]	
	[]	
	combustion endothermic exothermic	
	The forward reaction is	9

0 5	This question is about greenhouse gases and climate change.	Do not write outside the box
0 5.1	Which two gases are greenhouse gases? [2 marks] Tick (✓) two boxes.	
	Argon	
	Carbon dioxide	
	Nitrogen	
	Methane	
	Oxygen	
0 5.2	Why are greenhouse gases essential for supporting life on Earth? [1 mark]	
	The percentage of greenhouse gases in the Earth's atmosphere today is increasing. Many scientists think that this increase is causing global climate change.	
0 5.3	What is a cause of the greenhouse effect?	
	Complete the sentence. [1 mark]	
	Greenhouse gases absorb long wavelength	

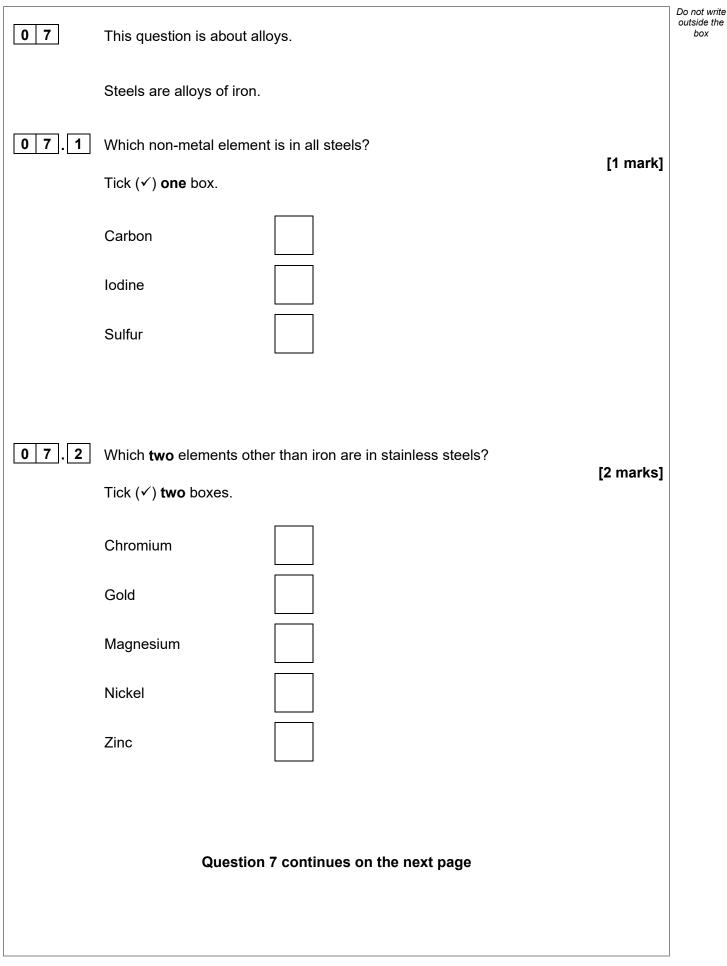
0 6 This question is about fuels.

The energy produced by burning fuels is used to generate electricity in power stations.

Table 5 shows information about three fuels used to generate electricity.


	Fuel		
	Coal	Oil	Natural gas
State of fuel at room temperature	solid	liquid	gas
Transportation of fuel to power station	train	pipeline	pipeline
Percentage by mass of sulfur in fuel (%)	5	1	0.001
Relative quantity of solid particles produced when fuel is burned	high	medium	low

06. 1 Explain why coal is usually transported to power stations by train and **not** by pipeline.

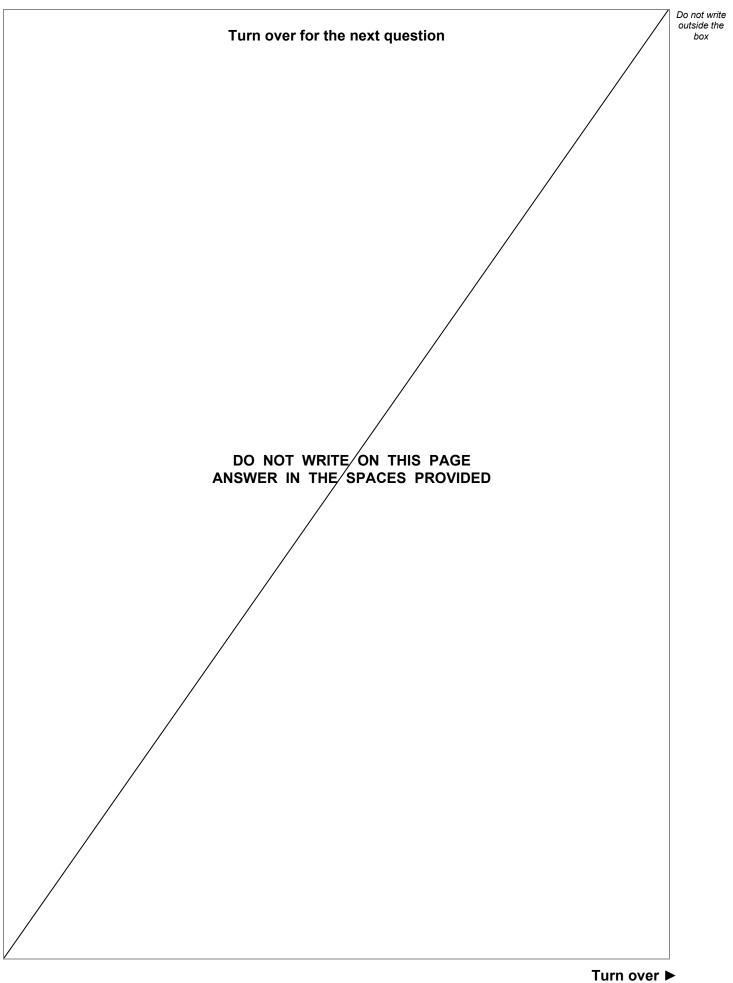

Use Table 5.

	Sulfur dioxide and particulates are atmospheric pollutants produced when fuels are burned.	Do not write outside the box
06.2	1 kg of each fuel in Table 5 is burned.	
	Which fuel produces the most sulfur dioxide?	
	Give one reason for your choice. [2 marks]	
	Fuel	
	Reason	
06.3	Give one problem caused by sulfur dioxide. [1 mark]	
06.4	Particulates are formed from solid particles. 1 kg of each fuel in Table 5 is burned.	
	Which fuel produces the least particulates?	
	Give one reason for your choice. [2 marks]	
	Fuel	
	Reason	
06.5	Give one problem caused by particulates. [1 mark]	

		properties of stainless steels		
	Choose ar	iswers from the box.		[2 marks
	brit	tle	hard	low density
		resistant to corrosion	soluble	e in water
	Property 1			
	Property 2			
	Titanium is	s used in alloys.		
	Table 6 sh	ows information about som	e alloys of titaniun	n.
		Table	9 6	
Titaniu	m alloy	Other metals in alloy	Strength	Used in
A		6.0% aluminium 4.0% vanadium	high	aircraft parts hip joint replacements
		5.0% aluminium	high	aircraft parts
В		2.5% tin		
		2.5% tin3.0% aluminium2.5% vanadium	medium	tennis rackets heart pacemakers
В		3.0% aluminium	medium	
B	Calculate t	3.0% aluminium		heart pacemakers
B	Calculate t Use Table	3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers
B		3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers
B		3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers
B		3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers
B		3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers
B		3.0% aluminium 2.5% vanadium he mass of titanium in 5.0 k		heart pacemakers

0 7.5	Suggest why alloy A and alloy B are used to make aircraft parts.	Do not write outside the box
	Use Table 6. [1 mark]	
0 7.6	Titanium alloys used for medical purposes must not be toxic.	
	Suggest why alloy B is not used for medical purposes.	
	Use Table 6.	
	[1 mark]	
		10
	Turn over for the next question	
	Turn over I	•

0 8	A student investigated the rate of the reaction between zinc and sulfuric acid.	Do not write outside the box
	Hydrogen gas is produced during this reaction.	
	Figure 7 shows the apparatus.	
	Figure 7	
	Stopper Conical flask Sulfuric acid	
	Zinc ///	
	This is the method used.	
	1. Add 50 cm ³ of sulfuric acid to a conical flask.	
	2. Add 2.0 g of zinc to the conical flask.	
	3. Quickly put a stopper in the conical flask and start a timer.	
	4. Measure the time taken to collect 20 cm ³ of gas.	
	5. Repeat steps 1 to 4 three more times.	
08.1	Suggest why the stopper must be put in the conical flask as quickly as possible in step 3 . [1 mark]	



08.	2 The student calculate	d the rate of th	e reaction for e	each trial.		Do n outs
	Table 7 shows the res	sults of the cal	culations.			
		Tab	ole 7			
		Trial 1	Trial 2	Trial 3	Trial 4	
R	ate of reaction in cm ³ /s	0.78	0.81	0.68	0.81	
	Determine the mean t	ime taken to c	ollect 20 cm ³ o	fras		
	Do not include any ar			, gus.		
	Use the equation:			af nor - 11 (- 4	
	me	ean rate of rea	ction -	e of gas collect an time taken	ea	
					[5	marks]
			Moon ti	ma takan -		
			mean u	me taken =		S
	Quest	ion 8 continue	es on the next	t page		

08.3	The student changed the investigation so that the mean time taken to collect 20 cm ³ of gas was greater.	Do not write outside the box
	Which two changes would increase the mean time taken to collect 20 cm ³ of gas?	
	[2 marks] Tick (✓) two boxes.	
	Use a catalyst	
	Use a larger conical flask	
	Use a lower temperature	
	Use smaller pieces of zinc	
	Use sulfuric acid of a lower concentration	
08.4	Hydrogen gas is produced during this reaction.	
	Describe the test for hydrogen gas.	
	Give the result of the test. [2 marks]	
	Test	
	Result	
		10

This question is about alcohols and carboxylic acids.

Alcohols are used as fuels.

A student burned 1.00 g of six alcohols and determined the energy released from each.

Table 8 shows the results.

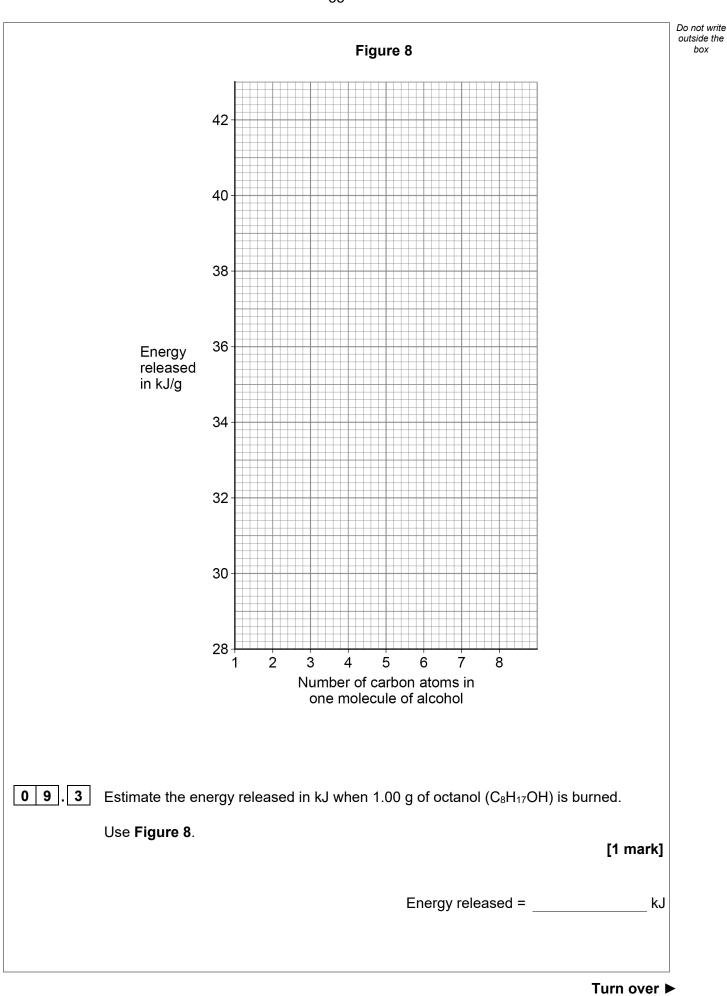
Table 8

Alcohol	Formula of one molecule of the alcohol	Energy released in kJ/g
Ethanol	C₂H₅OH	29.6
Propanol	C ₃ H ₇ OH	33.6
Butanol	C₄H₃OH	36.1
Pentanol	C₅H ₁₁ OH	37.7
Hexanol	C ₆ H ₁₃ OH	38.9
Heptanol	C7H15OH	39.8

09.1

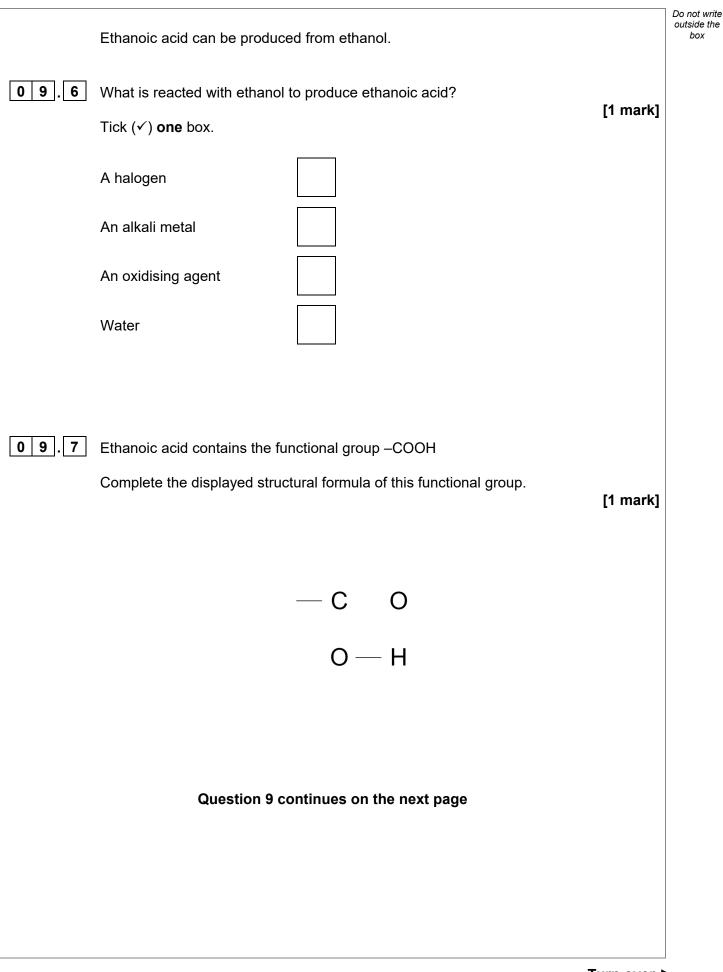
Calculate the mass of ethanol that must be burned to release the same amount of energy as burning 1.00 g of heptanol.

[2 marks]

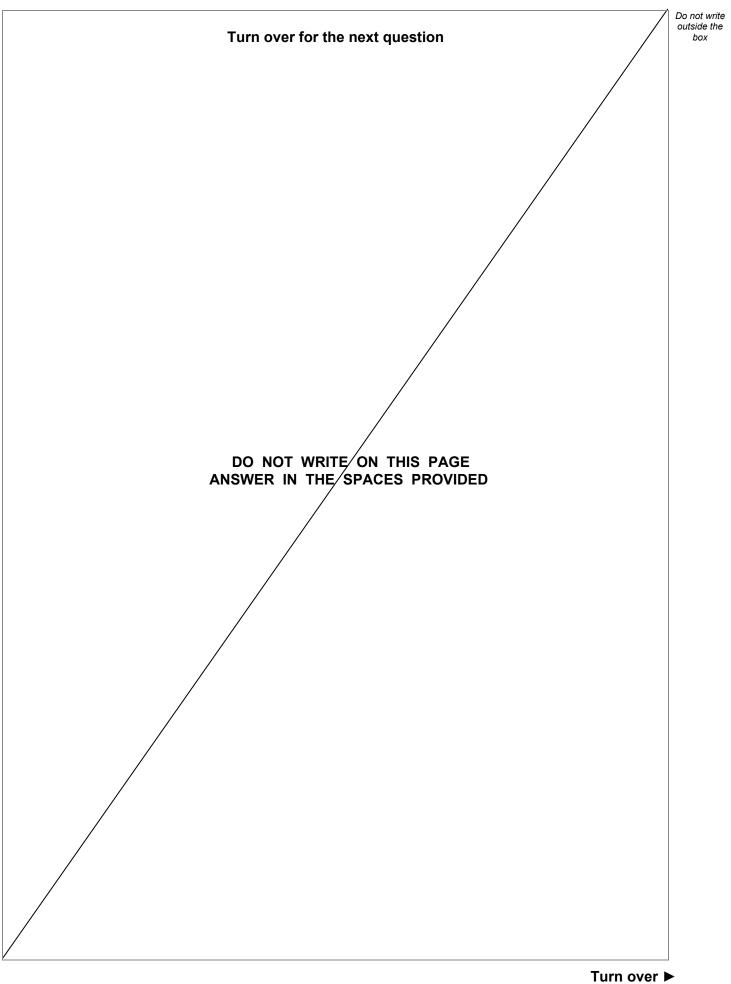

Mass = _____g

. 2 The energy released in kJ/g varies with the number of carbon atoms in one molecule of each alcohol.

Plot the data from **Table 8** on **Figure 8**.

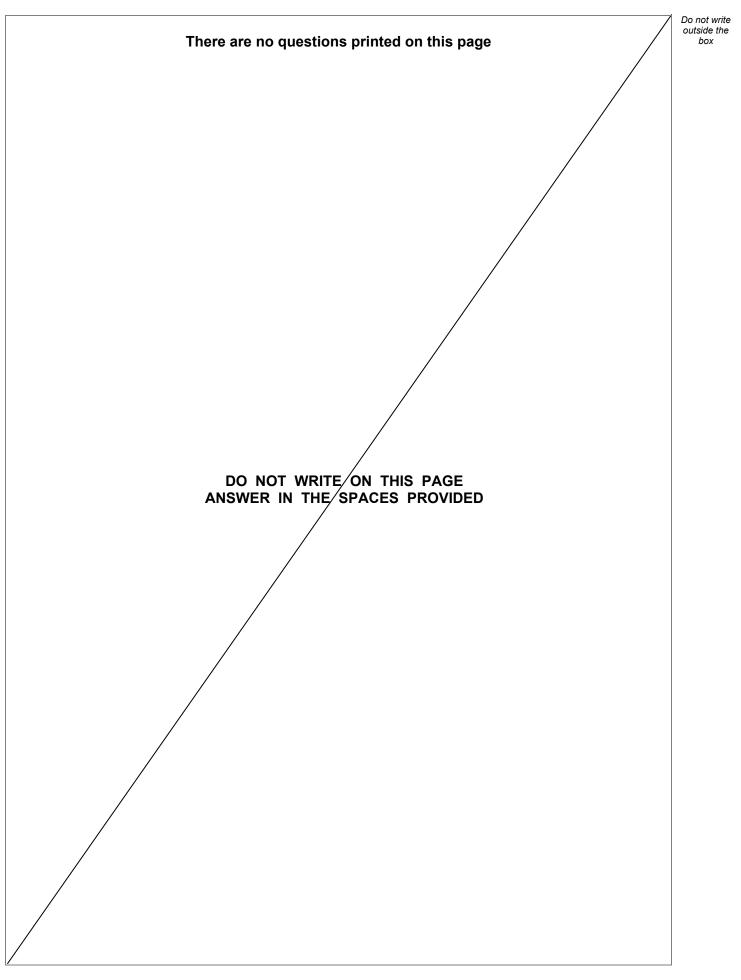

[2 marks]

		Do not with
	Carbon dioxide is produced when alcohols are burned. Carbon dioxide is identified by bubbling the gas through limewater.	Do not write outside the box
09.4	Complete the sentence. Choose the answer from the box. [1 mark]	
	calcium chloride calcium hydroxide calcium nitrate calcium sulfate	
	Limewater is an aqueous solution of	
09.5	Give the result of the test when carbon dioxide is bubbled through limewater. [1 mark]	



Turn over ►

09.8	Ethanoic acid reacts w	ith different compounds.	Do not wr outside th box	
	Draw one line from ea ethanoic acid.	ch compound to a product of the reaction of	of the compound with	
			[2 marks]	
	Compound	Product of the re with ethanoic		
		Carbon dioxi	de	
		Ethene		
	Ethanol	Ethyl ethano	ate	
	Sodium carbonate	Hydrogen		
]
		Poly(ethene	³⁾ 11	



1 0	This question is about chemical analysis.	Do not write outside the box
	Potassium bromide is used in medicine.	
	Polassium bromide is used in medicine.	
	A scientist tested a sample of medicine to show the presence of potassium ions and of bromide ions.	
	The sample is soluble in water.	
10.1	Plan a method the scientist could use to show that the sample of medicine contains potassium ions and bromide ions.	
	The scientist has:	
	• a Bunsen burner	
	• a metal wire	
	test tubes	
	a dropping pipette	
	distilled water	
	dilute nitric acid	
	silver nitrate solution.	
	You should give the results of the tests.	
	[6 marks]	

	The scientist could also use an instrumental method to show the presence of potassium ions in the medicine.	Do not write outside the box
10.2	Which instrumental method could be used to show the presence of potassium ions in the medicine? [1 mark]	
10.3	Give one advantage of using this instrumental method instead of a chemical test. [1 mark]	
		8
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

Do not write outside the box